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The general equivalence between D-dimensional probabilistic cellular automata 
(PCA) and ( D +  1)-dimensional equilibrium spin models satisfying a "disorder 
condition" is first described in a pedagogical way and then used to analyze the 
phase diagrams, the critical behavior, and the universality classes of some 
automata. Diagrammatic representations of time-dependent correlation 
functions of PCA are introduced. Two important classes of PCA are singled out 
for which these correlation functions simplify: (1) "Quasi-Hamiltonian" 
automata, which have a current-carrying steady state, and for which some 
correlation functions are those of a D-dimensional static model. PCA satisfying 
the detailed balance condition appear as a particular case of these rules for 
which the current vanishes. (2) "Linear" (and more generally "affine") PCA for 
which the diagrammatics reduces to a random walk problem closely related to 
(D + 1)-dimensional directed SAWs: both problems display a critical behavior 
with mean-field exponents in any dimension. The correlation length and effec- 
tive velocity of propagation of excitations can be calculated for affine PCA, as is 
shown on an explicit D = 1 example. We conclude with some remarks on non- 
linear PCA, for which the diagrammatics is related to reaction-diffusion 
processes, and which belong in some cases to the universality class of Reggeon 
field theory. 
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INTRODUCTION 

This paper is devoted to the link between probabilistic cellular automata 
(PCA) and the so-called "disorder solutions" of anisotropic lattice spin 
models. A PCA is an array of discrete variables which are simultaneously 
updated in discrete time steps according to some local preassigned 
probabilistic rules. ~1 3) The probability measure over space-time histories of 
an arbitrary D-dimensional PCA can be seen as the Boltzmann weight of a 
(D+  1)-dimensional equilibrium spin model. This equilibrium model is 
anisotropic, and its coupling constants can be calculated from the 
parameters specifying the evolution rule of the PCA. As a consequence, 
these coupling constants are not independent, but are linked by some 
relationship which, in the context of equilibrium spin models, is usually 
known as a "disorder condition" (a name used mainly for historical 
reasons(4)). 

The mapping of a PCA onto an equilibrium spin model is not new: it 
was discovered in the study of crystal growth models (5-8) (an old-fashioned 
name for some particular PCA) and has been used since by some 
authors. (9-13~ A recent article by Rujan (12) and--we hope--the present 
paper are complementary attempts to use this general equivalence between 
PCA and "disorder solutions" of spin models in order to study dynamical 
properties of PCA, a question which has not yet been systematically 
investigated. 

This paper has two main purposes. The first one is to present this 
equivalence in a unified and self-contained manner: this is the aim of Sec- 
tion 1 (Sections 1.1-1.5). These sections have, to a large extent, the charac- 
ter of a review (which, however, intends to give an original presentation 
and does not mean to be exhaustive). The second one, to which Section 1.6 
and Section 2 are devoted, is to show how this equivalence can be used in 
order to study the dynamical behavior of PCA, with particular emphasis 
on their phase transitions and universality classes. For the sake of con- 
venience, the detailed organization and contents of these two parts can be 
found at their beginning. 

Having presented the general approach of the paper, it can be useful, 
due to its length, to give at this point a brief summary of the main new 
results that it contains. The general equivalence between PCA and "disor- 
der solutions" of equilibrium spin models is described in Sections 1.1-1.2, 
and applied to the most general one-dimensional nearest-neighbor one-step 
PCA in Section 1.3 (several other examples are given in Sections 1.4-1.5). 
We discuss in Section 1.6 a particular class of PCA rules (called "quasi- 
Hamiltonian" ones) which display a current-carrying steady state and for 
which some correlation functions are those of a D-dimensional static 
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model. In Section2, diagrammatics and decimation techniques are 
introduced for the calculation of time-dependent correlation functions 
(which amounts to a static problem in the associated equilibrium spin 
model). This makes it possible to single out and to study in detail (Sections 
2.1-2.3) the class of "affine" (and "linear") rules (22.12.25) for which the 
calculation of correlation functions reduces to a random walk problem 
(they are equivalent in some particular cases to "voters models"; (e.g., 
ref. 63). This is illustrated by a specific example in Section 2.2, for which the 
relaxation-time and two-point correlation functions are explicitly 
calculated, as well as the "effective velocity of sound" characterizing the dif- 
fusion of an initial excitation. Phase transitions of "linear" rules are studied 
in Section 2.3 and their universality class is shown to be related to the 
problem of directed self-avoiding walks and to displaying mean-field 
exponents in any dimensionality. These techniques also allow one to extend 
dynamical and critical properties of PCA satisfying the detailed balance 
property to the more general case of "quasi-Hamiltonian" rules (Sec- 
tion 2.4) and to analyze in a simple and unified way the phase transitions 
of some nonlinear rules (Section 2.5). 

1. CELLULAR A U T O M A T A  A N D  SPIN MODELS 

In this part, we describe the mapping between a D-dimensional PCA 
and a (D+ 1)-dimensional equilibrium spin model. For pedagogical 
reasons, we first deal with an explicit example, which is detailed in Sec- 
tion 1.1. We then turn to the general scheme (Section 1.2) and show, in 
particular, that the criterion introduced by Jaekel and Maillard ~14~ for 
"disorder solutions" of spin models identifies with the normalization of 
probability in the PCA framework. A number of explicit examples of 1D 
and 2D PCA and of their associated equilibrium models are given in Sec- 
tions 1.3-1.5 (including, in particular, the most general nearest neighbor 
1D PCA). After a summary of elementary symmetry properties of PCA 
rules, we discuss in Section 1.6 the detailed balance principle. Finally, in 
connection with the possibility of defining an asymptotic measure over 
configurations, we point out the existence of an important class of rules, 
which we call "quasi-Hamiltonian." 

1.1. A Pedagogical Example 

The example we shall now deal with has been considered in particular 
cases by Verhagen (15) and Enting ~7) and, more recently, by Domany and 
Kinzel ~1~ for its relation with directed percolation. Consider a linear chain 
of sites (Fig. la), each supporting a binary variable Si=  +1, -1 .  Starting 
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Fig. 1. (a) The space-time triangular lattice generated by the evolution of the PCA described 
in the text. (b) Coupling constants between the spins of an elementary cell of the lattice. (c) 
Boundary conditions used for the calculation of the partition function. 

from a given configuration, the chain evolves in discrete time steps: at even 
(resp. odd) time steps, the even-indexed (resp. odd-indexed) spins can 
change their states simultaneously, according to preassigned probabilistic 
rules. These rules are chosen to depend only on the states of the two 
nearest neighbors, and are thus characterized by four conditional 
probabilities P(Si,, + 1/Si_ 1,,, Si + 1,,): 

x = P ( 1 / - 1 ,  - 1 ) ,  z=P(1/1, 1), y~=P(1 / -1 ,  1), y2=P(1/1, - 1 )  

(1.1) 

which 0~<x, Yi, z~< 1 and P(-S3/S1,  $2)= 1 -P(S3/S1, $2). This can be 
summarized in the following expression for the conditional probability: 

P(S3/SI, $2)= 1/2. [1 + S3(V+ TIS 2 + T2S 1 + US1S2)] (1.2) 
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where the parameters T1, U, V are related to x, y~, Y2, z through the 
relations 

T1 = 1/2. (z - x + Y l  - -  Y2) ,  

U = 1/2. (z + x - Yl - -  Y2) ,  

7"2 = 1/2. ( z -  x + Y2 - Yl) 

V= l /2.  (z + x + Y l  q'- Y2 - -  2 )  
(1.3) 

Consider now a given "history" of the PCA, that is, a set of successive 
states {&,,}; due to the Markovian nature of the evolution, the probability 
of this history reads 

P[  {Si.,} ] = I-I I-[ P(S,.t+, IS,_ ~.,, S,+ ~.,) (1.4) 
t i 

This suggests the rewriting of P(S3/S~, $2) in an exponential form, well 
suited to express products like (1.4). This can be done in a straightforward 
way: 

P(SJS , ,  S 2) =/t  -2 exp(H, $1 + H2 $2 q- H3 $3 -+- K12 Sl $2 '~/(23 $2 $3 

+ K13 $1 $3 + KOSIS2S3) (1.5) 

where the expression of 2, Hi, K, 7, and K o in terms of x, Yl, Y2, and z is 
given in Eqs. (A.2)-(A.3) of Appendix A. The trick is now to view the suc- 
cessive states of the chain as the successive rows of a two-dimensional 
triangular lalttice, as depicted in Fig. la (the time direction playing the role 
of the second dimension). The probability of the "history" {&.,} becomes 

P( {&,, }) = l /Z  exp[ -flH(&.,)] (1.6) 

where H is the Hamittonian of a spin model defined on this triangular 
lattice and involving magnetic fields, two-site and three-site interactions, in 
each elementary plaquette (hatched triangle depicted in Fig. lb), namely 

- f lH=(H~ + H2 + H3) ~ Si 
i 

@ E (KI2SIS2 + K233283 @ K13S1S3 + KoSIS233) (1.7) 

Nature of the Equil ibrium Model. We have thus mapped the 
time development of a 1D PCA onto equilibrium properties of a 2D spin 
model. However, this spin model is a very' peculiar one: it is anisotropic, and 
its coupling constants (Hi, K~, K0) are not all independent but are linked 
together by some relationship. This is a priori obvious, since these seven 
coupling constants are in fact functions only of the four independent 
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parameters x, y~, Y2, z. Stated differently, the Boltzmann weight 
W(S3, $2, $1) of an elementary triangle is related to the conditional 
probability through W =  2P($3/$2, $1) and thus satisfies the normalization 
condition 

2 W(S3, 32, 81)-~-~ (1.8) 
$3= _+1 

where ,~ depends on the coupling constants only and not on the spins $1 
and $2. This enforces directly some relationships between Hi, Ko., and Ko, 
of which Eq. (A.3) of Appendix A can be seen as a parametrization. Note 
that the equilibrium spin model is in fact defined by five coupling constants 
(and not seven), since the total field on each lattice site is the symmetric 
combination HI+H2+H3=h; Eq. (1.8) thus defines a codimension-1 
variety in the phase diagram parametrized by (h, K u, Ko) (called, as we 
shall see, a "disorder variety"). To be fully explicit, let us quote the 
relationship defining this variety in the simplified case where Ko is taken to 
be zero (that is, for the anisotropic triangular Ising model with a field). 
One finds (14' 15) 

tlt2t3(1 + tl)2(1 + t2)2(1 - t3)2(1 - a )  2 

+4(l+tlt2t3)(tl+t2t3)(t2+tlt3)(t3+ttt2)a=O (1.9) 

2 = 2[(1 - t2)(1 - t 2) -1 (1 - t~)-I ( - tl t2 t31)] 1/2 

where a = exp 2(H1 + H2 + H3), tl = tanh(K23), etc. 
The most remarkable feature of the model (1.7) constrained by 

Eq. (1.8) is that its partition function can be calculated exactly. Indeed, 
summing (1.4) over all possible "histories" leads to 

1=  ~ P [{S i . , } ]=  Z 1--[P(S3IS1, S2)=2-Np ~ ". H w (1.10) 
{s;.,} {s;} ~ {s} x~ 

where Np is the number of hatched triangles in the lattice. We thus 
conclude that the partition function simple reads 

Z=• Np (1.11) 

We have in fact been lax about the boundary conditions to be chosen: let 
us give now a more careful derivation, due to Jaekel and MaillardJ 14) It is 
based on a "decimation" method which will be useful in Section 2 for the 
calculation of correlation functions. The trick is to impose the particular 
boundary conditions depicted to Fig. lc on the upper layer of the 2D lat- 
tice: on this layer, all K12 interactions are missing. One can now sum over 
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the spins of this layer: thanks to condition (1.8), the same boundary con- 
ditions are recovered for the next layer, and each triangular plaquette 
simply contributes a factor 2 to the partition function. The process can be 
repeated recursively, leading to (1.11) for the whole lattice. 3 Thus, the local 
condition (1.8) results in a decoupling of the spin degrees of freedom and 
in an effective reduction of dimensionality for the spin system. From the 
point of view of anisotropic equilibrium spin models, this remarkable 
phenomenon occurs whenever the coupling constants of the most general 
Ising model of the form (1.7) satisfy the relationship (1.8), i.e., on a par- 
ticular subspace of the phase diagram. This is generally called a disorder 
solution, and condition (1.8) has indeed been proposed as a general rule to 
find disorder solutions of spin modelsJ 14) This term can be traced back to 
the work of Stephenson ~4) and stems from the fact that in some cases the 
correlation length is indeed minimum on the "disorder subspace" as a 
result of the local decoupling phenomenon. (4'1v) Note, finally, that 
expression (1.11) for the partition function restricted to the disorder sub- 
space is always a simple algebraic expression of the coupling constants [as 
can be seen on the example of (1.9)] and is therefore free of  any 
singularity. As will be made clear in the following, this does not mean that 
no intersection can occur with the critical variety of the spin model. 

1.2.  G e n e r a l  S c h e m e  

It should be clear already that the example detailed above can be 
easily generalized to an arbitrary D-dimensional PCA. The general idea is 
to consider the successive states of the D-dimensional array as the suc- 
cessive layers of a (D + 1)-dimensional lattice, the last dimension being the 
time. The Markovian and local nature of the evolution rule allows one 
to define a local Hamiltonian on this (D + 1)-dimensional lattice such 
that the probability of a given "history" {Si,,} is equal to the thermo- 
dynamic weight of the configuration {Si, t} in the equilibrium model. 
This Hamiltonian involves in general, in each elementary cell, multispin 
coupling constants and fields, which are functions of the original 
conditional probabilities, and are thus linked by some relationship 
(through normalization of probability). Thus, the associated ( D +  1)- 
dimensional model is restricted to the "disorder variety" of its phase 
diagram. This general equivalence is summarized in Table I, where the 
correspondence between some quantities of interest is given. 

It should be emphasized that a dynamical quantity for the PCA (such 

3 The Perron-Fr6benius theorem ensures that (1.11) is, indeed, the partition function of the 
model, despite the unusual boundary conditions chosen (see also ref. 16). 

822/54/3-4-29 
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Table I, Equivalence between a D-Dimensional PCA and a 
(D + 1 )-Dimensional Spin Model Satisfying a "Disorder Condition" 

D-Dimensional PCA (D + 1 )-Dimensional spin model 

Space-time "history" {Si.,} 

Local conditional probability 
P({S',+ , } / {S,})  

Normalization condition: 
Z{s,} e({s'}/{s})= 1 

Evolution operator 

Initial configuration 
Probability of a history: 

t '({S,.,}) 
(-..): Average over histories 
Dynamical correlation function: 

<s,,,sj, ..... >~ 

Transient phenomena 

Deterministic limits 
Deterministic "histories" 

Spin configuration { Si.t } 

Normalized local Boltzmann weight 
(1/~.) w({s'}, {s}) 

"Disorder condition" on coupling constants: 
Y{s'} W({S'},  {S}) = 2, independant of S 

Row-to-row transfer matrix 

Boundary condition 
Thermodynamic weight: 

1/Z exp[ - flH( Si, t) ] 

Thermodynamic average 

Correlation function: 
<S,,,Sj. ..... > .  

Surface effects 
Different zero-temperature limits 
Ground states 

as a correlation function) corresponds to a bulk thermodynamic average in 
the associated spin model only when averaged over all possible "histories." 
As noted in ref. 12, transient phenomena in the PCA for a given initial con- 
dition correspond to surface effects in the spin model with fixed boundary 
conditions. 

The deterministic limits of the PCA (where all conditional 
probabilities are taken to be zero or one) are of particular interest. (z'3) In 
these limits, all coupling constants of the spin model go to + oo or - 
[see Eq. (A.3)]. The different deterministic limits are thus associated with 
the different possible ways of taking the zero-temperature limit of the spin 
model while preserving relation (1.8) between coupling constants. Each 
particular time development of a deterministic CA corresponds to a 
different ground state of the equilibrium spin model with a given boundary 
condition.(1~ 

The general scheme described in this section can be adapted to a 
variety of situations which cannot all be reviewed here. (lz'14'lS) We will 
simply given some examples in the next three sections which each displays 
some features at variance with the example of Section 1.1. 

It is worth mentioning that a D-dimensional PCA can also be seen as 
a quantum problem (spin model) in D dimensions: this is sketched in 
Appendix B. 
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1.3. The Most  General Nearest Neighbor,  Markovian,  1D PCA 

The most familiar picture of a 1D PCA (1'3) is the case of binary spins 
Si,, on a line, with a simultaneous Markovian evolution characterized by 
the eight conditional probabilities P(Si,, + 1/Si i,,, S u ,  S~+ 1,,): 

z = P(1/1 ,  1, 1 ) 

Yl = P(1/--1,  1, 1) 

yo=P(1 /1 ,  - 1 ,  1) 

y2 = P ( 1 / 1 ,  1, - 1 )  

x = P ( 1 / - 1 ,  - 1 , ,  - 1 )  

v 1= P(1/1, - 1 ,  - 1 )  

v o = P ( 1 / - 1 ,  1, - 1 )  

v z = P ( 1 / - 1 ,  - I ,  1) 

(1.12) 

Thus, the state of a spin at time t + 1 depends not only on its nearest 
neighbors at time t, but also on itself. The 2D lattice generated by the time 
evolution (12) is depicted in Fig. 2a: its elementary cell is the hatched 
triangle containing four sites. However, because of the simultaneous 
evolution of all sites, each of these cells has an overlap with two others. 
When no particular restriction is imposed on the conditional probability, 

Si-u Si,t Si+U 

(a) 

'.-, kJ ~ ~ '.., V '../ V ',.r kl ,g ~t 
", I \ I \ I ~, I \ 

"V.,,Vd 
I \ r ,, I ", I \ I \ I \ 

(b) 

Fig. 2. (a) The space-time lattice associated with the general nearest-neighbor 1D PCA. 
Notice the overlapping cells. (b) Decoupling between the two sublattices in the "peripheral" 
case. 
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the Boltzmann weight W(So/S1, $2, $3) of an elementary cell involves all 
possible interactions among the four spins. The explicit expressions of these 
coupling constants in terms of the conditional probabilities are given in 
Eq. (A.11) of Appendix A. (In fact, due to the overlap between plaquettes, 
only 11 coupling constants are necessary to define this 2D spin model, 
which are linked by three "disorder conditions" through the normalization 
of e). 

From the existence of three- and four-spin interactions as well as next- 
nearest neighbor interactions--some of which are negative--one may 
expect a very complicated phase diagram involving a variety of phases, as 
is the case, for example, for ANNNI models. (19) The same complexity is 
present in the structure of the ground states of the model, which are 
associated with one of the 28 = 256 deterministic limits of the PCA (some 
Of which are chaotic)/2'3) It is convenient to characterize these limits by 
their rule number: following the conventions of ref. 3, it is defined as a 
function of the parameters as 

NR=x+2v2+4Vo+8y1+16vl+32yo+64y2+128z (1.13) 

where all the parameters entering this formula take the values 0 or 1. 

" P e r i p h e r a l  Automata."  The example of Section 1.1 can be 
viewed as a particular case among the more general 1D PCA described 
here, namely those where the state of a spin at time t depends only on its 
neighbors at time t -  1, and not on itself. The term "peripheral" is generally 
given to these automata. (zl~ This enforces the following condition on the 
conditional probability: 

P(S3/S1, So, $2)=P($3/$1,-So, $2) (1.14) 

which reads 

X=Vo, z =  Y0, Yl =v2, Y2=Vl (1.15) 

This results in the cancellation of some of the coupling constants: 

n 0 = 0, gol = Ko2 = Ko3 = 0, K 1 = g 2 = g 3 = 0 ,  L = 0 (1.16) 

As a consequence, the 2D lattice of Fig. 2a splits into two independent sub- 
lattices, as depicted in Fig. 2b. As expected, each one is a triangular sublat- 
tice identical to the of Fig. la. Thus, the evolution of a peripheral PCA can 
be viewed as the evolution of two independent two-step PCA of the type 
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Table II. The 16 "Per iphera l"  Determinist ic  Rules a 

1021 

(x, z, y~, Y2) NR Boolean form Class Comment 

(0000) 0 0 I Affine, DB 
( 1111 ) 255 1 I Affine, DB 

(0100) 160 al a2 I DB 
(0111 ) 250 al + a2 t DB 

(1000) 5 ci 162 II DB 
(1011 ) 95 6~ + ~2 1I DB 

(0011 ) 90 a162 -}- al tff2 III 
(1100) 165 ?q62+ala 2 III 

(0010) 10 ~i 1 a 2 II QH 
(0001) 80 alci: II QH 
(1110) 175 61+a2 II QH 
(1101) 245 a I + ci 2 II QH 

(0110) 170 a 2 II Linear, QH 
(0101) 240 al II Linear, QH 

(1010) 15 ci a II Linear, QH 
(1001) 85 a2 II Linear, QH 

a The last column indicates rules which are "affine" or "linear" or satisfy the "quasi- 
Hamiltonian" (QH) or "detailed balance" (DB) property. 

described in Section 1.1. The determinist ic limits of such PCA have rule 
numbers  [us ing  (1.13) and  (1.15)] 

N R = 5 x +  10yl + 80y2 + 160z (1.17) 

These determinist ic "peripheral" rules are enumera ted  in Table II, together 
with their Boolean decomposi t ions  and with their "classes" (in Wolfram's  
sense~3)), which gives quali tat ive in format ion  on their complexity. 4 We also 
indicate whether they belong to some of the remarkable  classes studied in 
the following: "quas i -Hami l ton ian"  rules (Section 1.6) or "affine" ones 
(Section 2.1). We will devote special a t ten t ion  th roughout  this paper  to the 

isotropic case y l = y 2 ,  whose phase diagram is given in Section 1.6 
(Zig. 5b). 

4 These four classes characterize the states reached when starting from a random initial one: 
(I) homogeneous state, (II) separated stable or periodic structures, (III) chaotic pattern, 
(IV) complex localized structures. 
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1.4. Other One-Dimensional Examples 

1.4.1. Multiple-States PCA. The previous examples can be 
extended in a straightforward way to the case where each variable Si, t can 
take q different values ("colors"). The associated spin models are 
generalized anisotropic q-state Potts model/2~ Explicit formulas for this 
mapping in particular cases, together with studies of the disorder varieties 
of the Potts model, can be found in refs. 8 and 21-23. 

1.4.2. " S t a g g e r e d "  Rules. This kind of PCA rule can be map- 
ped onto a frequently studied type of anisotropic model: Ising (or Potts) 
models on the checkerboard lattice. Consider a linear chain of sites which 
evolve simultaneously at each time step, with the following "alternating" 
rule: at even time steps, sites 2n and 2n + 1 group together and change 
their states according to conditional probabilities P(gzn ,  t + 1, 
S2n+l , t+ l /g zn ,  t, g zn+l , t  ). At odd time steps, sites 2n and 2 n - 1  group 
together, and evolve according to the same conditional probabilities. The 
"space-time lattice" generated this way has a "checkerboard" structure 
(Fig. 3), each elementary plaquette (hatched square) supporting in general 
all possible types of spin interactions. They are linked by the "disorder con- 
dition" for the Boltzmann weight W(S'~, S'JS1, $2), which stems from the 
normalization of probability: 

~, W(S'I, S'2] $1, $2) =independent of $1, $2 (1.18) 
si,sl 

Once again, this is the criterion used in ref. 14 to find the disorder solutions 
of the checkerboard Potts model. 

2n-1 ,~  2n,t+] 2n,l,t+ 

S2n, t S2n+l,t 

Fig. 3. Checkerboard space-time lattice associated with "staggered' PCA rules. 
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Fig. 4. 

. . . .  

(a) 

/so"'-- / " ' -  
(b) 

(a) The honeycomb lattice and its two triangular sublattices. (b) The space-time hcp 
lattice associated with the two-dimensional PCA described in the text (from ref. 11). 

1.5. A 2D PCA and Its Associated 3D Spin Model 

We shall finally illustrate the mapping of a 2D PCA onto a 3D 
equilibrium spin model by a simple example. It was introduced, in a 
particular case, by Welberry and Miller (5~ as a three-dimensional model of 
crystal growth, and has been recently revisited by Domany (11) in the very 
special case where the detailed balance principle is satisfied (see below, Sec- 
tion 1.6). This example can be viewed as a natural generalization to higher 
dimensions of the two-step ("peripheral") PCA of Section 1.1. Consider a 
2D honeycomb lattice with binary variables Si. t and divide it into two 
triangular sublattices, 5 as depicted in Fig. 4a. At even (resp. odd) time 
steps, the black (resp. white) spins change their states according to 
probabilistic rules depending on the states of their three white (resp. black) 

5 Note that this is not the original way in which Welberry and Miller introduced this model. 
They rather viewed the hcp lattice as generated by a 2D crystal-growth model evolving 
along the (III) direction of a cubic lattice. 
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nearest neighbors, which remain unchanged. The rule is thus characterized 
by the eight conditional probabilities P(S3/S1, So, $2). The three-dimen- 
sional space-time lattice generated by this evolution, depicted on Fig. 4b, is 
made of alternating 2D layers (the black and white triangular sublattices); 
the elementary cell is the up-pointing tetrahedron ($3, $1, S 0, $2): one 
thus recognizes a hexagonal close-packed structure. The associated 3D 
equilibrium Hamiltonian involves all possible couplings between the spins 
of an elementary tetrahedron. The coupling constants are the same 
functions of the eight parameters of the PCA as for the general 1D PCA of 
Section 1.3 [Eq. (A.11) of Appendix A]. 

Other examples of 2D PCA can be given leading to 3D equilibrium 
spin models satisfying a "disorder condition." Some of them can be viewed 
as 3D generalizations of the checkerboard-type models in two dimensions, 
and thus correspond to "staggered" PCA rules. We refer to refs. 14, 24, and 
25 for further details. 

1.6. Symmetries of PCA and the Existence of an 
Asymptotic Measure 

1.6.1. Elementary Symmetries. Let us briefly summarize some 
general symmetry properties, which relate different evolution rules together. 

Spin-Reverse Symmetry ("conjugation"): To any PCA rule, one can 
associate the rule for which + l's and - l ' s  are simply exchanged. For the 
PCA of Sections 1.3 and 1.5 this amounts to the following change in the 
parameters: 

z*-*l-x,  vi~-~l-yi for all i (1.19) 

Up to this exchange, the two rules have of course exactly identical proper- 
ties. They have in particular the same degree of complexity, and belong to 
the same "class" in Wolfram's sense. The rules which satisfy 

z + x = t ,  yi+vi=l for all i (1.20) 

are invariant by conjugation, and so is their associated equilibrium spin 
model (it involves no couplings between an odd number of spins). 

Left~Right Symmetry ("reflection"): One can associate to each 1D 
PCA rule of Section 1.3 its "image in a mirror" through 

yl*--~y2, Vl ~---,~ v 2 (1.21) 

This kind of spatial symmetry can be immediately extended to the 2D case. 
Rules invariant under reflection will be called "isotropic" in the following. 
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F e r r o m a g n e t i c / A n t i f e r r o m a g n e t i c  S y m m e t r y .  This applies to con- 
jugation-invariant rules. It is not generally discussed in the context of PCA, 
but is quite naturally suggested by the mapping onto a spin model. With 
each space-time "history" { S i . t }  is associated a transformed one {Si,,} 
defined by 

for all i: ~i,~ = Si, t for t even 

= -S;, t  for t odd (1.22) 

S~,~ is thus obtained by alternatively flipping the layers of the space-time 
lattice. With a given PCA rule, one would like to associate a transformed 
rule which would give the history {Si,,} the same probability as the 
original rule to {Si,,}. By looking at this requirement at two successive 
time steps, it is easily seen that this is only possible for c o n j u g a t i o n -  

i n v a r i a n t  ru les .  For these rules, it amounts to the following change: 

x ~ l - x = z ,  z - -*  l - z = x ,  yi ' --~ l - -  y i =  v i ,  t ) i ' ~  l - -  t ) i =  y i 

(1.23) 

which is such that between-layer coupling constants of the equilibrium 
model change their signs, while inside-layer ones do not [cf. Eq. (A.11)]. 
Thus, it can be seen as a ferro/antiferro symmetry of this model. Note that 
this transformation can induce significant qualitative changes in the pattern 
generated by the two rules, starting from a f i x e d  initial configuration, but 
that their s t a t i s t i c a l  properties should be identical. It is, in particular, a 
useful symmetry to keep in mind when dealing with the critical properties 
of conjugation-invariant PCA, since it relates one to the other the 
"ferromagnetic" and "antiferromagnetic" critical values of the parameters. 
In the deterministic limits (1.13), it relates one of the 16 conjugation- 
invariant rules NR to 255--NR, or, explicitly, (15,240), (85, 170), 
(23, 232), (43, 212), (113, 142), (5l, 204), (77, 178), (105,250). All these 
rules belong to class II, except the last one, which is chaotic (class III). It 
can be checked that they have indeed identical statistical properties, 6 and 
we therefore emphasize that these equivalences should be taken into 
account when defining "minimal representing rule numbers" (equivalence 
classes under simple symmetries)J 2) 

1.6.2. Deta i led  Balance and T ime Reversal .  Whether an 
asymptotic measure can be defined over the configurations of the D-dimen- 
sional array of spins for a given PCA is an important question, and, in 
general, a difficult one. There is, however, a well-understood situation, 

6 Simulations of the patterns generated by 1D deterministic rules, together .with their 
statistical properties, can be found in the Appendix of ref. 2. 
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namely when the rule satisfy the detailed balance principle. This requires 
the existence of a hamiltonian Yfo over the D-dimensional array of spins, 
such that 

P(S;[ {Ss}) 
1-1 = exp(fl[ Jt~ { Si } ] - ~D[ { S'i } ] ] ) P(Si[ }) (1.24) 

for any two configurations (Sg) and (S~). This condition ensures that the 
Gibbs measure exp[-flWD] is approached asymptotically as time goes to 
infinity: the PCA thus describes the parallel dynamics of the D-dimensional 
spin model with Hamiltonian YgD' 

The detailed balance condition (1.24) is easily solved (26'12) for the 
1D PCA of Section 1.3. Writing the conditional probability P(S3/S1, So, $2) 
under the form of Eq. (A.10), one gets 

[I  P(S'i/ { Ss} ) = 1/2 .exp [Go({S}) + ~ SI(H3 + K13 S~_1 
i i 

+ Ko3Si + K23Si+ 1 + GI({S}))] (1.25) 

where the functions Go and G 1 have been introduced to simplify notations 
(GI contains only two- and three-spin products). This leads to 

I~, P(S;[ {S:})= ex p [Go({S})_Go({S,}  ) 
P(S,l {Sj}) 

+ ~ FH3(S; - S,) + (K13 - K23) S;(Si_I -- Si+ 1) 
i 

AU S ; 6 1 ( { S } )  - -  S i G , (  { S t } ) ]  1 (1.26) 
A 

It is then clear that (1.24) is satisfied if and only if G1 vanishes identically, 
a n d  K 1 3 = K 2 3 .  The detailed balance condition for the tD PCA thus 
reads(12' 26) 

K13 = K23 (1.27) 

K0 = Ka = K2 = L = 0 

The one-dimensional Hamiltonian defining the Gibbs measure is easily 
obtained from (1.26), and reads, up to an additive constant, 
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-fl~t~ = - G o  + H3 ~ Si 
i 

= (I43 - 1-Io - - 142) s , -  (I ol + Ko2) Z 
i i 

-- K12 ~ SiSi+2 - K3 ~ S i -  1SiSi+ I 
i i 

(1.28) 

Conversely, starting from a given Hamiltonian, one can construct along 
these lines a PCA rule describing its parallel dynamics (see ref. 45 for 
illustrations). (Note, however, that if one insists on keeping the elementary 
cell of Fig. 2a, the coupling constants Ko and Kt2 cannot take arbitrary 
values.) 

In fact, as expected, the detailed balance condition (1.27) is equivalent 
to time-reversal invariance. This is most easily seen on the associated 
equilibrium spin model. The elementary cell corresponding to the time- 
reversed evolution is depicted in Fig. 5a: it involves the couplings between 
the spins (Si.t, Si_ 1., + 1, Si,, + 1, Si+ 1,, + 1). Constraining this elementary cell 
to be identical to the direct one is obviously equivalent to the detailed 
balance condition (1.27). 

It is worthwhile at this step to deal more explicitly with an example (I~ 
which will often be considered in the following, namely the "peripheral" 
PCA of Section 1.1 in the isotropic case Yl = Y2- For further reference, the 
three-parameter (z, x, y) phase diagram of these PCA is depicted in 
Fig. 5b. [Note that this phase diagram has symmetry properties under 
conjugation and also when y = l / 2 ,  z + x = 2  (segment CC')  under 
ferro/antiferro symmetry.] Detailed balance is satisfied when the three-spin 
coupling constant K o vanishes, namely [cf. Eq. (A.3)] 

z x 

1 - z  1 - x  = (1.29) 

In order to figure out the location of this manifold in the phase diagram of 
Fig. 5b, the six edges of the cube as well as the segment CC'  which are 
included into this manifold have been drawn in dashed-dotted. (It will be 
shown below that CC'  corresponds to the remarkable class of "linear" 
PCA.) When (1.29) is satisfied, the PCA rule describes the parallel 
dynamics in two steps (alternating updating of odd- and even-indexed 
spins) of the following one-dimensional Ising model: 

- - f l ~  = Z ( J g i S i +  l -t- B S i )  (1.30) 
i 
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The three  pa rame te r s  x, y, a n d  z are d e t e r m i n e d  f rom the coup l ings  J a n d  
B t h r o u g h  (1.29) a n d  

zx(1 - z ) ( 1  - x )  = eSK, 2 =e_Sj 
[ y ( 1  _ y ) ] 2  

( ~ _ ~ ) 4  = e 8(H1 + H2-- H3) = e - 8B 

(1.31) 

Si, t 

(a)  

25O ( I )  255 
~ ~ ( 1 )  

,~0//I,%-L\-~\ ...... ~ --/ 
( r ~ |  ~ ~,i  165 / i 

I / ! !  \ / , i i  \ / I 
I / ',I \ / I 

/ i ;  \ / ,, 
,', , ,  . . . .  / . . . .  j 

,' ~ ' -  -~"{--Y-Os?s 
: Y / /  " ,  j - "  C11) 

0(I) x 5 (11) 

(b) 

Fig. 5. (a) The elementary cell (delimited by the dashed lines) corresponds to the time- 
reversed evolution of the PCA of Section 1.3. (b) Phase diagram of the PCA of Section i.I with 
Y* = Y2 (= Y). The rule number and "class" have been indicated at each (deterministic) corner. 
The surface (1.29), on which detailed balanced is satisfied, contains all dashed-dotted lines. 
The hatched plane corresponds to affine rules (and segment CC' to linear ones), The 
equivalence with directed percolation holds on the faces x = 0 and z = 1 (10): the corresponding 
critical curve is depicted as given in ref. 10 (dots indicate numerical indetermination). 
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Fig. 5 (continued). (c) Phase diagram of the Welberry and Miller model: detailed balance is 
satisfied along the solid curve, the rule is linear along the dashed-dotted line. Critical boun- 
daries: dotted lines: mean-field approximation; dashed curves: expected location (critical 
points C, C'  and F, AF are exactly known; triangles were found numerically in ref. 5). 

The transition rate between two successive configurations {S~} and {S~ +1 } 
thus reads, as expected (at even time steps), 

6(S~, Si'+l ) 
w(t-* t+ 1 ) = e x p [ - p ~ ( { S ~ + l } ) ]  [-[ 

N[{S}]  i "  
odd  

(1.32) 

where N is a normalization factor involving the fixed spins only. Segment 
CC' (on which spin-reversal invariance holds) corresponds to the dynamics 
of the Ising model in zero magnetic field. A phase transition is thus expec- 
ted at zero temperature, that is, for y =  1/2 and (x, z )=(0 ,  1) or (1, 0). 
Indeed, we will show in Section 2.2 that points C and C' are critical points, 
and discuss the corresponding critical behavior. 

For the 2D PCA of Section 1.5, the detailed balance condition takes a 
form slightly different from (1.27). Indeed, in this case, the spin So is on the 
same footing as $1 and $2, and a supplementary condition must thus be 
added to (1.27), which becomes 

go3 = g13 --- K23 
(1.33) 

Ko=K1 = K 2 = L = 0  

In the following we shall study in some detail those of the 2D PCA which 
are invariant by conjugation and isotropic, i.e., such that x =  l - z ,  
Yo = Yl = Y2 = 1-Vo = 1 -  vl = 1 - v 2  (denoted by y). This is the "crystal 
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growth model" originally considered by Welberry and Miller. (s) For this 
model, the detailed balance condition becomes simply L = 0, which reads 

- = (1.34) 
1 - z  

This is the plain curve appearing in the phase diagram of the model depic- 
ted in Fig. 5c (note that this phase diagram has the ferro/antiferro sym- 
metry property). When (1.34) is satisfied, the PCA describes the two-step 
parallel dynamics of a honeycomb Ising model, as studied in detail in refs. 
11 and 13. Adapting to this case the analysis made above, the Hamiltonian 
of this honeycomb model is easily found to be 

-/~ogY = ~ S ie j  (1.35) 
( i j )  

where K denotes Ko3=Kt3 =K23 and Si, ffi are the spins of the two 
triangular sublattices of Fig. 4a. The transition rate between two con- 
figurations has a form similar to (1.32); the parameters y and z are related 
to K through 

e K e 3K 

z = (1.36) 
Y = 2 cosh K' 2 cosh(3K) 

The underlying equilibrium model on the hcp lattice involves only two-spin 
coupling constants: between-plane ones Ko3 =K13 = K23-= K, and inside- 
plane ones K12 =Km = Ko2 (denoted by K'). The "disorder condition" links 
K with K' reads in explicit form 

exp(4K') = cosh(K)/cosh(3K) (1.37) 

Note, in passing, that this means that - K '  is obtained from the K's 
through a star-triangle transformation. This is clearly expected from the 
general form (1.8) of the "disorder condition," which states that the inside- 
plane coupling constants obtained when summing over $3 have to compen- 
sate the K'.  

A dynamical phase transition is expected to occur for the values of 
(y, z) corresponding to the (ferromagnetic and antiferromagnetic) critical 
points of the honeycomb Ising model (1.25). These are the points F and A F  
in the phase diagram of Fig. 5c. Thus, in this case, the critical and "dis- 
order" varieties of the associated hcp Ising model do have an intersection at 
nonzero temperature: we will come back to this point in Section 2.4. 
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1.6.3.  " 'Quas i -Hami l ton ian ' "  PCA. Finally, we want to point 
out the existence of a slightly more general class of PCA than those satisfy- 
ing detailed balance, and for which a Hamiltonian over the configurations 
can nevertheless be defined. Consider again the time-reversed elementary 
cell of Fig. 5a: instead of exact time-reversal invarianee, let us constrain this 
cell to coincide with the direct one only up to a left/right symmetry. This no 
longer requires K13 to be equal to/<23, and replaces condition (1.27) by the 
less constraining one 

L = K o = K I = K 2 = O  (1.38) 

Stated differently, this means that the time-reversed Boltzmann weight itself 
(which involves the spins S~,t, Si_ 1.t+,, Si, t+ 1, S;+ t.t+ t) satisfies the dis- 
order condition (1.8) when summed over Se, t. We will show in Section 2 
(Sections 2.2 and 2.4) that, when this condition is satisfied, all equal-time 
correlation functions of the PCA are equal to the equilibrium correlation 
functions of a D-dimensional spin model with Hamiltonian ~D given by 
(1.28). However, the steady state carries a nonzero current when K13 ~ K23 
(that is, when the detailed balance principle is not satisfied). Indeed, 
because of the anisotropy of the rule, its time development displays some 
privileged velocities: one has to supplement the Gibbs measure exp(--flJt~D) 
with a "current at infinity" to define the asymptotic properties of the con- 
figurations (in a way very similar to the case of a biased random walk). A 
more detailed study of such anisotropy-dependent properties will be made 
in Section 2.2 for a specific example. Similar situations displaying a current- 
carrying steady state have been recently investigated in ref. 62. 

We choose to call "quasi-Hamiltonian automata" the PCA satisfying 
this property. Provided the Hamiltonian JgD does not have too unusual 
properties, it is clear that such PCA cannot display very complex time 
developments such as chaotic behaviors: thus, they can only belong to 
classes I or II in Wolfram's sense. It is interesting in this respect to look for 
the deterministic rules which are limits of "quasi-Hamiltonian" PCA: this is 
performed in Appendix C in an exhaustive way. Rather surprisingly, it is 
found that as much as half of the 256 deterministic rules of Section of 
Section 1.3 are quasi-Hamiltonian ones, and indeed belong 7 either to 
class I or to class II. Another half of the remaining ones exhibit a complex 
(class III) behavior. 

7 A privileged direction, revealing a current at infinity, is clearly seen in the patterns generated 
by most of these class II rules. Notice that it does not always coincide with the "timelike" 
direction, even in a deterministic limits (see, e.g., rules Na = 3, 7, 27, 35, etc.). 
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2. D Y N A M I C A L  BEHAVIOR: CORRELATION FUNCTIONS,  
PHASE T R A N S I T I O N S  

In this part, it is shown how the equivalence between D-dimensional 
PCA and (D + 1)-dimensional equilibrium spin models Can be used in the 
calculation of time-dependent correlation functions. Diagrammatic and 
decimation techniques are used, which have been previously introduced for 
the purpose of expansions around "disorder solutions" of spin 
models. (27-3~ The evolution of the time-dependent magnetization m(t) is 
considered in Section 2.1: this leads to singling out a particular class of 
PCA, which we call "affine" ones, (22'12'25) for which m(t) can be exactly 
calculated. It is shown how a mean-field calculation of m(t) can be perfor- 
med in other cases, and the resulting mean-field approximations to the 
phase diagrams of Figs. 5b and 5c are discussed. Section 2.2 is devoted to 
the detailed study of a specific example for which the two-point correlation 
functions can be exactly calculated, together with the "effective velocity of 
sound" characterizing the diffusion of an initial excitation. It is shown in 
Section 2.3 that this exact calculation is in fact possible in principle for all 
affine PCA. Correlation functions for "quasi-Hamiltonian" rules are studied 
in Section 2.4, thus providing a justification of the discussion of Section 1.6. 
Finally, we make some remarks in Section 2.5 on the general nonlinear 
case. 

Particular attention is payed in all these sections to the phase-tran- 
sitions of PCA and their universality classes. As we shall see, the mapping 
onto an equilibrium spin model is a very efficient rool for analytical studies 
of this point, especially by allowing field-theoretic approaches. 

2.1. S ingle-Point  Correlat ion Functions, Magnet iza t ion  

Even the evolution of the simplest quantity, namely the single-point 
correlation function, is coupled through a hierarchy of equations to more 
complicated correlation functions. Indeed, writing the conditional 
probability under the form 

P (  Si, t + 1/( Sj, t) ) = 1//2[-1 -~ Si, t + 1F(  ( gj, t) ) ] (2.1) 

one gets 

S'P(S'/(Sj)) = F((Sj)) (2.2) 
S'= +_1 

which involves in general multispin products: taking the average over 
space-time histories thus relates (Si.,) to higher-order equal-time 
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correlation functions, t27~ For the "peripheral" PCA defined by (1.1), for 
example, one obtains 

( S i . , ) = [ V + U ( S i  1 . , S i+I , , ) ] / [1 - (T I+T2)]  (2.3) 

which is valid when (S ( t+  1 ) ) =  (S( t ) ) ,  that is, far from the boundary 
layer. 

2.1.1. Aff ino PCA. However, there exists a simple case in which 
this hierarchy appears in closed form, namely when F(S) is an affine 
function of the spins: 

F((Sj)) = V+ • TjSj., (2.a) 
J 

We choose to call such rules "affine PCA" ("linear PCA" when, in 
addition, one has V=0). They were first introduced in refs. 12 and 25 
(and earlier in ref. 22 in a very particular case). They also reduce in some 
particular cases to "voters models. ~63) Among the general 1D PCA of 
Section 1.3, the affine ones are defined by [-using (A.8)] 

z + x =  yo+vo= yl +va= y2+v2 
(2.5) 

x - z = v o + v a + v 2 - ( y o +  ya+ yz) 

and linearity requires furthermore that z + x =  1. (These conditions take 
the same form for the 2D PCA of Section 1.5.) In the deterministic limits, 
one finds only eight rules satisfying (2.5): six of them are "peripheral" ones 
and have been already mentioned in Table II. The remaining two are rules 
204 (identity ao) and 51 (complementation ao). One thus sees that the eight 
deterministic affine rules are the elementary Boolean operations and their 
transforms by conjugation. When restricted to the peripheral PCA of 
Section 1.1, Condition (2.5) defines a hyperplane: 

z + x=  y~ + y2 (2.6) 

which, in the isotropic case Yl = Y2, is the plane depicted in the phase 
diagram of Fig. 5b. Note that, for these "peripheral" PCA, linearity implies 
necessarily the "quasi-Hamiltonian" property, which is not true in more 
general cases. The 2D PCA whose phase diagram is given in Fig. 5c are 
linear along the straight line 1 + z = 3y. 

For affine PCA, the time-dependent magnetization, defined by 

1 
m ( t ) = ~  Z Si, t l~ P(Sj,~I {S~,~_1}) (2.7) 

{sj.~} j 
T<;t  

822/54/3-4-30 
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can be calculated exactly. Using (2.2), one readily obtains that m(t) follows 
a simple exponential relaxation law: 

m(t) -mo~ -,/t~ 
~ e  

m(O) -moo 

= - l n  r j  (2.8) 
J 

V 
moo = - -  =- <Si,,) 

1 -  Es T, 

Equation (2.8) is valid when 1 > 1 -52 iTs>0 :  in the opposite case, an 
oscillatory factor appears in front of the exponential. One can check that 
1 -Y~j T s remains nonzero as long as V does: the phase transition which 
occurs when these two parameters simultaneously vanish will be studied in 
Sections 2.2 and 2.3. Expression (2.8) for the relaxation time of m(t) then 
displays the usual phenomenon of critical slowing down. 

2.1.2. "Mean-F ie ld"  Approach to the Nonlinear Cases. A 
mean-field-type approximation can be used to study the time-dependent 
magnetization in the nonlinear cases. (1'26"31) It simply consists in forgetting 
the correlations between the evolution of the different spins, and thus 
decoupling the above hierarchy (this approximation is, as usual, exact in 
the limit of infinite coordination(Z6)). The time dependence of m(t) is then 
approximated by a nonlinear mapping obtained simply by replacing all the 
spins (Sj,,) in (2.1) by m(t), namely 

m(t + 1 ) = F[(m(t))] 

= V + ( ~ T i ) m ( t ) + ( ~ U i ) m ( t ) Z + W m ( t )  3 (2.9) 

Notice that this approximation is exact for affine PCA. 
For the PCA of Fig. 5b, (2.9) reads 

m(t + 1) = [(z + x - 2y)/2] re(t) 2 + (z - x) m(t) + (z + x + 2y - 2)/2 

(2.t0) 

The study of the critical points of this mapping provides us with a mean- 
field approximation of the phase diagram of Fig. 5b. The discriminant 
reads 

Din(x, y, z)=- 1 + 4 [ y ( y -  1 ) + x ( 1 - z ) ]  > 0  (2.11) 

and thus one has in general two fixed points (m_, m + ). One is thus led to 
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separate different regions, depending on the value of the derivative F ~  at 
these fixed points: 

1. F "  = +1 defines the critical boundary on which both m and m+ 
reach the value -1 .  This is equivalent to Din(x, y , z ) = 0 ;  however, the 
intersection of this manifold with the physical cube 0 ~< x, y, z ~< 1 reduces 
to the lines (x = 0, y = 1/2) and (z = 1, y = 1/2) (which meet at point C): 
these are the mean-field approximations of the critical lines depicted (from 
numerical simulations) in Fig. 5b. 

2. F "  = -1  amount to D,,(x, y, z ) = 4 ,  and defines another critical 
surface which includes point C ' .  In the domain limited by this surface and 
containing rules NR = 5 and 95, the mean-field magnetization m(t) enters a 
2-cycle ( m ,  m+), while in the other half of the cube an asymptotic 
magnetization is reached. However, numerical simulations indicate that 
this critical surface is apparently an artefact of the mean-field approach, 
and in fact reduces to the single point C'  (no transition to a 2-cycle is 
found). 

For the 2D PCA of Fig. 5c, (2.9) reads 

m ( t + l ) = 3 ( z + y - 1 ) m ( t ) / 2 + ( z - 3 y + l ) m ( t ) 3 / 2  (2.12) 

and one t h ~  gets three mean-field phases delimited by critical lines on 
which F ~  = +1, namely: 

1. z + y > 5 / 3 :  "ferromagnetic" phase, for which the asymptotic 
2 = (5 - 3z - 3y)/(z - 3y + 1). magnetization is given by rn~ 

2. 1/3 < z + y < 5/3: "paramagnetic" phase, in which the mean-field 
asymptotic magnetization vanishes. 

3. z + y <  1/3: "antiferromagnetic" phase (deduced from the 
ferromagnetic one by the ferro/antiferro symmetry), with opposite 

- -  2 magnetizations + m~ on successive layers, given by m~ = 
(1 - 3z - 3y)/(z - 3y + 1 ). 

These critical lines are depicted in Fig. 5c: thus, in this case, the mean- 
field approach gives a correct qualitative understanding of the phase 
diagram, even if the precise shape of the critical lines is found to be slightly 
different. (As expected, only the critical points C and C' of the linear case 
are correctly given by mean-field theory; remember that points F and A F  
are exactly known.) 

2.2. T w o - P o i n t  Corre la t ions:  A So lvab le  Case 

We will now consider two- (and higher-) point correlation functions, 
and first study an example where they can be exactly calculated. Such a 
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calculation was first performed in ref. 22, though with rather different and 
lengthier methods than the graphical ones that will be introduced here and 
used in the following sections. Let us consider the "peripheral" PCA of Sec- 
tion 1.1 in the linear case U =  V=0.  (The associated 2D model is then 
simply the zero-field triangular Ising model; see Appendix A.) These PCA 
are "quasi-Hamiltonian" and have the detailed balance property if one 
imposes furthermore Yl = Y2 (this last case corresponds to the segment 
CC' in the cubic phase diagram of Fig. 5b). Averaging over space-time 
histories of the PCA amounts to a summation over spins in the 
corresponding equilibrium model: indeed, one can adapt the "decimation 
technique" of Section 1.1 to the calculation of correlation functions, as first 
shown by Dhar and Maillard ~28) (see also ref. 27), and developed in refs. 

25, 29, and 30. Consider a given two-point correlation function 
(Si, ,Sj . ,+~).  Starting from the boundary conditions described in Sec- 
tion 1.1 for the upper layer, one can perform the downward summation 
over spins (the factor 2 obtained for each plaquette will be absorbed in the 
normalization l /Z) .  This can be done until the spin Sj,,+~ is met: at this 
step, one has to sum Sj., +, W instead of the Boltzmann weight W itself, and 
thus the disorder condition (1.8) is a priori of no help. This generates a 
cone of plaquettes (the "causality cone" of Sj,,+,) over which decimation 
cannot a priori be performed (see Fig. 6a). However, one can take advan- 
tage here of the "pseudosymmetry" property, which allows one to perform 
the summation over down-pointing triangles, starting from the lower layer 
of the lattice (with suitable boundary conditions), Again, this generates 
a "forbidden cone" starting on site (i, t) (Fig. 6a): one is thus led to 
distinguish between two very different situations: 

(i) (j, t+T)  does not belong to the "causality cone" issued from 
(i, t): the difference ( i -  j, r) is "spacelike." 

(ii) (j, t + ~) belongs to this cone: ( i - L  ~) is "timelike." 

Such a distinction simply reflects the causality properties of the 
dynamical process. 

In case (i), the past cone of Sj.,+, can be entirely decimated by the 
upward summation: thus, there only remains a path of links joining (i, t) to 
(j, t + ~ )  along which the two summations meet (Fig. 6a). (The choice of 
this path is not unique and does not affect the final result.) The correlat ion 
function thus has a purely one-dimensional nature, and reads (using 
standard results) 

(Si, tSj, t+r)spa celike= H (-~-ti) (2.13) 
path 



(a) 

(b) 

\AAA  
like 

(P--I12) ~.p~P~ p~~_P-P~ p 

~a 
Fig. 6. (a) Spacelike-separated spins: the two cones (dashed lines) do not intersect. The 
correlation function reduces to a single path weighted by ti, such as the one depicted. 
(b) Timelike-separated spins: in this case, the correlation function is a s u m  over directed paths 
lying inside both cones, weighted as depicted. (c) '~ cone" (timelike region) and 
"dynamical cone" (hatched) issued from a given spin Set. The dashed curve is a schematic 
contour plot of the correlation length ~(p). 
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Fig. 6 (continued). (d) Pattern generated from the same initial state (two - l ' s)  by linear 
rules close to criticality (z =0.99): (1) Yl = 1 - y~=0.25, (2) Yl = 1 - yz=0.05. The velocities 
V,, (dashed-dotted arrow) and VL, R (solid arrows) are indicated. 

[Recall that  t i = tanh K n ;  the relation which links the Ti and the ti is given 
in Eqs. (A.6)-(A.7) of Appendix A.]  In  this formula, links Kt3 and K23 
must  be counted with a "plus" sign and links K12 with a "minus" sign, since 
the latter have been involved twice in the decimation process. Using 
Eq. (A.7) of Appendix A, we obtain in particular for the equal-time 
correlation length 

I El - (T~ - T2)23 ~/2 - [1 - (Ta + T2)23~121 
(2J  = 2 In 2(Tt T2) 1/2 (2.14) 

(valid for T1 T2 > 0), which coincides with the result of ref. 22. 
Expression (2.13) is the one expected, at least for equal-time 
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correlation functions, when the detailed balance condition Y,=Yz is 
satisfied: it simply means that these correlation functions are the static ones 
of the one-dimensional Ising model (1.32) with B = 0 ,  whose dynamics is 
described 8 by the PCA (Section 1.6). It is, however, quite remarkable that, 
as announced in Section 1.6, such a simple form also holds for the PCA 
which are only "quasi-Hamiltonian": it will be shown in Section 2.4 that 
this is indeed a general property. 

In case (ii), the problem has been recast into a simpler form by 
decimation, namely the evaluation of the correlation function for the 
domain of the space-tirhe lattice obtained by intersection of the two cones 
(Fig. 6b). As is expected for a timelike correlation function, this domain, 
while smaller than the whole lattice, has a priori the full complexity of a 
two-dimensional problem. However, it can be solved analytically here, 
thanks to the linearity of the PCA rule. Indeed, when summing over the 
spin Sj.t+~, one gets, using (2.2)-(2.4), 

Z Sj.t+zP(gJ.t+rlSJ-,,t+z-,,Sj+l,t+r-~) 
Sj, t+z= +.~i 

= T 2 S j _ l , , +  z 1 - - ~ T 1 S j + l , t + z  l (2.15) 

As a result of the linearity of the rule, only single spins appear in the rhs; 
thus, the process can be iterated recursively, given rise to a sum over paths 
joining (i, t) and (j, t + r), weighted by the Ti (Fig. 6b). Each of these paths 
passes at most once on each hatched triangle and cannot take horizontal 
links. This diagrammatics was originally introduced and studied in refs. 29 
and 30 for the purpose of expansions around "disorder solutions" of the 2D 
Ising model. Here, one has to deal with the boundaries of the domain in a 
proper way: it is not difficult to realize that, as a result of decimation, the 
links belonging to the edges o f  the domain have to be counted with a 
weight ti instead of T,.. A bit of combinatorics then leads to our final result 
for the correlation function: 

~ ~ ~ _ , T ; , 2 ( n l + n 2 - n - 1 ) + ( 1  ~--~2)(2.16) ( S i ,  t S j ,  t+v) t imel ike  = t i T  1 
n=O n 2 - -  1 

where n~ and nz are the numbers of links on the lower edges of the domain 
(n, = 4, n2 = 2 in Fig. 6b) and are geometrically related in a simple way to 
the difference ( i - j ,  ~). The summation index n counts the fraction of the 
path which is "adsorbed" on one of the boundaries. Indeed, it is interesting 

8 That K12 has to be counted with a minus sign in (2.13) is clearly seen in this case on 
Eq. (1.28). 
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to notice that this diagrammatics is very similar to a problem of directed 
self-avoiding walks (32'33) (the different directions being affected with 
unequal weights) in the presence of a fixed boundary. 

2.2.1. Long-Time Behavior. It is most interesting to analyze the 
long-time behavior of the correlation function (2.16). For this purpose, we 
set n~ = pN and n2 = (1 - p)N, where 0 < p < 1, and let N go to infinity: 
this means that we take R = i - j  and T simultaneously large, with a fixed 
ratio R/T (that is, a fixed "velocity"). (The long-time behavior of a 
correlation function for a fixed spatial separation is simply recovered for 
p = 1/2). Using the steepest-descent method, we find that the saddle point 
for the first summation in (2.16) is located at 

n,/N=~O if O<~p<~ T1/t~=p+ 
(2.17) 

(pt~- T1)/(t~- T1) if l ) p>~ T~/t~ 

An analogous behavior is found for the second summation, replacing 
(tl, T~) by (t2, T2) , and p by 1 - p .  This results in the following dominant 
behavior of the correlation function for large N: 

O<~p<.p_= T 1 t ~ :  (Si,,Sj.t+~)=(tX~-P/tf) N 

p_ <~p<<.p+ = T1/t~: (Si, tSj,,+~) =2[(T~/p)P(T2/1 _p)l-p]N 

p + ~< p ~< 1: (S,,,Sj,, +, ) = (tf/t I - P)N (2.18) 

Thus, there appears another cone in the space-time lattice (Fig. 6c) outside 
which the behavior of the correlation function is a simple continuation of 
the one-dimensional behavior valid in case (i). However, inside this cone 
the behavior is entirely different, and reflects the dynamical nature of the 
PCA (or, analogously, the 2D nature of the equilibrium model). Note that, 
while the "causality cone"---corresponding to a unit velocity (the "speed of 
light" )--has a purely kinematical nature, the new cone appearing here is 
truly dynamical. The slopes of its boundaries (easily obtained from p and 
p+ ) define two velocities VL, R which play the role of the "speeds of sound" 
for the left and right propagation of an initial excitation in the PCA. In the 
context of deterministic CA, these quantities are generally called "left and 
right Lyapunov exponents. ''(2) Here, they must be understood in a 
statistical sense, since an average over space-time histories has been perfor- 
med. Note that when y~ r Y2, the PCA rule is not symmetric under reflec- 
tion, which results in p + r 1 - p _, and thus in Vc r VR, as expected. The 
axis of the "dynamical cone" thus makes a finite angle with the time axis 
(Fig. 6c): this illustrates the fact that a "current at infinity" exists for such 
PCA. 
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An interesting feature displayed by Eq. (2.18) is the continuous depen- 
dence of the correlation length on the direction of observation (or 
"velocity") R/~:. Defining ~ for simplicity through (Si,,Sj.t + ~ ) "~ exp(N/~), 
one gets 

-~(p) 

= ~ [ p l n t ~ - ( 1 - p ) l n t 2 [  for p<~p_ o r p ~ > p +  

~ p l n T l + ( 1 - p ) l n T 2 - p l n p - ( 1 - p ) l n ( 1 - p )  for p <~p<<.p+ 
(2.19) 

A schematic contour plot of this function is displayed in Fig. 6c: the two 
regimes join up in a smooth way at the boundaries p =  p+ ,  p_ of the 
"dynamical cone"; ~(p) exhibits a maximum for the direction p = Pm inside 
this cone given by 

(1 --Pm)/Pm = (1 - p + ) / p _  = Tz/T,,  ~-~(Pm) = In [T~ + 7"2[ (2.20) 

Note that this maximum value is equal to the relaxation time of the 
magnetization t R calculated in Section 2.1. 

All these features are clearly seen on Fig. 6d, which displays the pat- 
tern generated by rules close to criticality (z = 0.99) for two different values 
of the "anisotropy" Y2/Yl, starting from the same initial state. The direction 
Vm given by (2.20) is indicated and indeed coincides with the mean direc- 
tion of the propagation (and thus appears as the mean velocity of the 
"current at infinity"). VL and VR give a satisfactory estimation of the width 
of transverse spreading. 

The change of behavior of the correlation function inside the 
dynamical cone can be seen as a "desorption transition" for the directed 
SAW problem to which the diagrammatics is related. Indeed, inside this 
cone the saddle point (2.17) is located at n* = 0  (dominant diagrams thus 
go directly from one point to the other), while it is located at a finite value 
of n* outside the cone (part of the diagram is then "adsorbed" on the 
boundary). 

2.2.2. Phase Transitions. The previous expressions for ~ exhibit 
a divergence when 

T 1 + T 2 = 2 z -  1 ~ +1 or - 1  (2.21) 

independently of the value of Yl - Y2 (note that these two critical values 
are related by the ferro/antiferro symmetry of Section 1.6). Indeed, in these 
limits, one sees from Eq. (A.7) of Appendix A that tl, t2 goes to 1 and 
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P+ ~ P - - - *  Pro- More precisely, setting e=  1 - z  (we deal with the case 
where T1 + T2 ~ +1, to fix ideas), one obtains 

2 
t l~ l - ZCv/-e, t2~ l - -~  x/~ (2.22) 

with C =  [(1 + Y2- Yl)/( 1 + Yl - Y2)]  1/2. Thus, in the critical limit, the 
"dynamical cone" reduces to the single direction p = Pm of the space-time 
lattice. In this direction, the following divergence of the correlation length 
is found: 

- l (p)  ~ 2e for 1 - x//~ 4 P/Pm ~< 1 + ~ (2.23) 

i.e., ~ (p )~  Iz--zcl -vlL, with v i i= l ,  while, apart from this direction, one 
obtains 

~-~(p)~ 2~l/Z ( pC + ~-~ -~) (2.24) 

~(p) ~ Iz-zcl  vl, with v• = 1/2. 
This phase transition deserves several remarks. 

1. It has the usual features of a dynamical phase transition: "static" 
and "dynamic" correlations are characterized by different exponents 
V L = 1/2 and v H = 1, which assume here their mean-field values (34) and lead 
to a dynamical exponent Zd= VH/V • = 2. As will be shown below, this is a 
general feature of the phase transitions of linear PCA (12) (as well as directed 
SAWs(33)) .  Note that the exponent vii is observed only in a neighborhood 
(of size x ~ )  around the particular "velocity Vm, which does not coincide 
in general with the time direction, except when the isotropy condition 
Yl = Y2 is met. 

2. In this last case, the critical rules found here correspond to the 
points C and C' in the cubic phase diagram of Fig. 5b. As discussed in Sec- 
tion 1.6, the rules on the edges x = 0 ,  z =  1 and x =  1, z = 0  satisfy the 
detailed balance condition and thus describe the dynamics of a one-dimen- 
sional Ising model. The phase transitions at C and C' simply reflect the 
zero-temperature transition of this model. Moreover, it has been shown in 
ref. 10 that PCA rules lying on the side x = 0 of the cube (and their trans- 
forms by symmetries) are equivalent to a two-dimensional directed per- 
colation problem, and that point C is the endpoint of a critical line (depic- 
ted in Fig. 5b from the numerical determination of ref. 10), which separates, 
in the sides x = 0 or z = 1 of the cube, a percolating and  a nonpercolating 
phase. In the nonpercolating ("dry") phase, an initially disordered state 
evolves to a uniform state containing only - l ' s ,  while in the percolating 
("wet") phase, a finite magnetization is reached (see the patterns displayed 
in ref. 59). For the "critical rules" themselves, the magnetization (2.8) has 
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different limits when the transition V= t - Z j  T~ = 0 is approached along 
different directions in the phase diagram. The fact that the points C, C'  do 
not fall in the usual universality class of directed percolation, (3s'36) which 
holds along the rest of this line, is due to the linearity of the rules. 
Nevertheless, many qualitative features found here, such as direction- 
dependent properties, are also found in usual directed percolation. (31) 
Indeed, the edge x = 0, z = 1 of the cube essentially corresponds to the 
"exactly solvable model of directed-percolation" of Domany and Kinzel, (37) 
for which v• = 1, vll= 2. 

3. Some of the linear rules which do not satisfy detailed balance are 
critical even in the deterministic limits. This is the case of the peripheral 
rules (15, 85) and (170, 240) and also, as we shall see in the next section, of 
the rules 51 and 204, which are linear but not peripheral. Note that these 
rules are of class II and conserve the magnetization. 

4. From the point of view of equilibrium spin models, these critical 
properties appear at first sight as very intriguing. Indeed, the equilibrium 
model considered here is nothing but the zero-field triangular Ising model 
on its "disorder variety." Thus, questions immediately arise: Where does 
anisotropic scaling come from? Where is the usual logarithmic singularity 
of the 2D Ising model hidden? These apparent paradoxes have been 
studied in detail and solved in refs. 29 and 30. The main point is that the 
critical and disorder varieties of the model have an intersection only at zero 
temperature (i.e., are asymptotic one to the other for infinite values of the 
coupling constants) which corresponds to the transition described above 
for the PCA. It can be seen that in this region, the usual logarithmic 
divergence is replaced by an unusual e = 1/2 singularity: this is the result 
expected on the basis of hyperscaling, since 

= 2 - D v i - v l l  = 2 - 1 -  1 =�89 (2.25) 

This phenomenon was already known in specific applications of the Ising 
model, such as the roughening transition ~38) or some dimer models. ~39) 
Indeed, the genuine critical behavior of an equilibrium model is always 
deeply modified in the vicinity of its "disorder varieties": we shall come 
back below to this question, which certainly deserves more careful and 
systematic study. 

2.3. Dynamical  Behavior of Linear and Af f ine  PCA 

2.3.1. Correlat ion Functions of  Linear PCA. The decimation 
technique allowing us to calculate correlation functions for the previous 
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example made use of both the linearity and "quasi-Hamiltonian" nature of 
the PCA rule. However, as will be shown in this section, the linearity 
property by itself is sufficient to allow exact calculations of spacelike and 
timelike correlation functions. 

Indeed, in the previous section, the "quasi-Hamittonian" property was 
used only to perform a supplementary upward decimation, leading to sim- 
plified calculations. Suppose one no longer has this extra possibility: con- 
tinuing the downward decimation gives rise, for linear rules, to a sum over 
simple graphs, such as the one depicted in Fig. 7a for a two-point function 
of a general 1D linear PCA. As explained for the case (ii) of Section 2.2, 
this is due to Eqs. (2.2) and (2.4) (with V = 0): each graph can pass at most 
once on each plaquette, and cannot take horizontal links. Each link is 

V A A / ~ A A A A A - ~ A A / A  
(a) 

(b) 
Fig. 7. (a) In the general linear case (here for D = 1), the correlation function is a sum over 
graphs weighted by Ti and obeying the rules given in the text. (b) Graphs ending on a V term 
(circle) i n the affine case. 
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affected with the weight Ti corresponding to its direction (i.e., T1, T2, or To 
in the example of Fig. 7a). One thus obtains a summation over (D+ 1)- 
dimensional admissible graphs (which are in fact a special case of directed 
SAWs): 

<So, oSR, t>li . . . .  PCA = E U Ti (2 .26)  
F ieF 

When the "pseudosymmetry" condition is satisfied, a partial resummation 
can be performed among these graphs in order to recover the diagram- 
matics of Section 2.2. 9 

More explicit expressions can be given for the correlation functions, by 
noting that (2.26) has a simple interpretation as a D-dimensional random- 
walk problem. Indeed, taking the linear PCA of Section 1.3 as an example, 
let us consider the one-dimensional random walk in which the walker can 
jump to the left with weight TI, to the right with weight T2, or stay at the 
same site with weight To (note that, as a slight complication, negative 
weights can occur). Then, (2.26) is nothing else (up to a normalization fac- 
to r - see  below) than the probability of meeting of two walkers with initial 
conditions separated by a distance R and a time delay t. Note that, when 
[Zj Tj] # 1, the random walk has a finite probability of death, so that (2.26) 
will in general display exponential decrease in space and time, as expected. 
(As will be shown below, a phase transition arises when ~ j  Ts~ +1 or 
-1.)  This random walk problem can generally be solved explicitly in any 
dimension, for simple enough lattices/4~ The previous section is one of the 
simplest example of such an explicit solution; others could be given, for 
example, for the 2D PCA of Section 1.5: one would encounter the same 
qualitative features, namely the existence of a "dynamical cone" defining 
left and right "speeds of sound." We want rather to concentrate on the 
critical properties of these linear rules, and will now present simple 
arguments suggesting that they do not depend on dimensionality. 

2.3.2. Phase Transitions and Universality Class of Linear 
PCA. Let us consider the relative walk performed by the vector AB 
joining the two walkers. It is characterized by the following weights: 

( A B + 2  TI T~ 
/ A B + I  T1To + T2 To 

AB ~ ~ AB T 2 + T 2 + T 2 (2.27) 

] A B - 1  T1To + T2 To 
~ A B - 2  TIT 2 

9 This can be checked explicitly and is indeed a remarkable property of the "disorder 
condition." 
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The normalization of these weight is (To+ T1 + T2) 2 and the associated 
randomwalk problem thus involves a probability of death: 

A=  In (2.28) 

One thus expects linear PCA to have a phase transition when 

Tj--+ +1 (2.29) 
J 

These two critical values are related by the ferro/antiferro symmetry of Sec- 
tion 1.6. They correspond to points C and C' for the 2D PCA whose phase 
diagram is given in Fig. 5c. Note that, for linear automata of Sections 1.3 
and 1.5, Y'. T j = 2 z -  1: thus, transitions always arise for semideterrninistic 
limits in which the PCA has one "absorbing" (or "repelling") state [namely 
P ( 1 / l l l ) = I  or P ( - 1 / l l l ) = I ] .  This always corresponds to a zero- 
temperature transition for the associated model in dimension D + I. 

Let us give a simple argument showing that this transition indeed 
exists, allowing one to calculate the associated critical exponents. The 
equal-time correlation function (So( t )SR( t ) )  is proportional to the total 
probability of meeting of two walkers initially separated by a distance Ro 
Denoting by Pl(x, t/R, 0) the probability for the relative walk to reach site 
x for the first time at time t, one thus obtains 

(So(t) Sn(t) ) oc ~ dt' P,(O, t'/R, O) (2.30) 

Approximating PI(O, t/R, O) by 

PI(O, t/R, O) ~ lit  1 + D/2 exp(--R2/Ct - At) (2.31) 

and using the saddle-point method in (2.30), one obtains 

(So(t) SR(t) ) ~ I /R (~  1)/2 exp[ -- (A/C)I/2R ] (2.32) 

Thus, the spacelike correlation length diverges in the limit (2.29), with an 
exponent v• = 1/2. The algebraic decay at criticality is characterized by 
r/_L = ( 3 -  D)/2. Correlation functions for timelike separations are even sim- 
pler to estimate: at criticality, graphs going directly from point (0, 0) to 
point (R, t) are expected to dominate the large-time behavior for directions 
R/t inside the "dynamical cone" centered around a velocity Vm. The 
(So(O).SR(t)> is proportional to the probability for the relative walk to 
come back at its initial position in a time t; therefore 

(So(0) SR(t)> ~exp(--At)  for R / t ~  Vm (2.33) 
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leading to ~ll "~ A-v~ with vlt = 1. As explained in the previous section, this 
timelike behavior is observed only around the particular direction Vm of 
the space-time lattice; the opening angle of this "dynamical cone" goes to 
zero at criticality like 

~ / ~  ,-~ AVr' v~ = ~ (2.34) • II 

Thus, the phase transitions of linear PCA are characterized by the 
mean-field exponents v• = 1/2 and vii = 1 in a l l  dimensionality. (12) This was 
to be expected, on the basis of the analogy with directed SAWs. Indeed, 
this problem is described by an a n i s o t r o p i c  0 40(N) field theory in the limit 
N ~  0, which has been shown (33) to yield the same unmodified mean-field 
exponents in any dimension. It is in fact quite intriguing to notice (6~ that 
several other (nonlinear) examples of nonequilibrium phase transitions dis- 
play mean-field critical exponents. (6~ The above analysis of the linear 
case could help in the understanding of this point, for which the directed 
nature of the associated equilibrium model certainly plays a central part. 

The universality of the critical properties of linear PCA together with 
the simplicity of their evolution raises interesting issues concerning the 
nature of their associated (D + 1)-dimensional equilibrium models. The 
transition described here corresponds to a zero-temperature intersection of 
the critical and disorder varieties of this model. In this limit, anisotropic 
scaling is found, with a specific heat exponent given by 

= 2 - D v •  - vii = 1 - D / 2  (2.35) 

on the basis of hyperscaling, generalizing the ~ = 1/2 "exotic" singularity 
(2.25) found for the 2D Ising model. This is also confirmed by Cardy's 
analysis. (33] It is interesting to notice that this singularity has indeed been 
found for some three-dimensional dimer models. (41) (We emphasize that 
these results hold despite the analytic character of the free-energy restricted 
to the disorder variety 2.) 

2.3.3. A Remarkable  Class of Spin Models.  These properties 
raise the question of what happens when enlarging the equilibrium model 
outside its disorder variety in such a way that the Boltzmann weight (in its 
nonexponential form) contains only two-spin products. The intriguing 
nature of such spin models has been pointed out by Rujan. (12) For D = 1, 
the answer is simple: indeed, adding a term T 3 S ~ S  2 to the rhs of Eq. (1.2) 
allows us to recover the fully anisotropic Ising model, whose formulation 
as a free-fermion theory in the variables 7',. has been explicitly built form 
the diagrammatics described here in ref. 30. The critical variety of this 
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enlarged model simply reads T 1 --]- T 2 + T 3 = 1, and its genu&e logarithmic 
singularity is quite different from the ~= 1/2 singularity found in the 
vicinity of the disorder variety. It appears that the "linear" spin models 
described here are in some sense a natural extension to higher dimension of 
the 2D free fermion models, which certainly deserves further study. 

2.3.4. Correlation Functions of Aff ine PCA. The calculation 
of correlation functions for affine PCA is also possible, though a little more 
involved, because of the V term in Eq. (2.4). Indeed, when performing the 
downward decimation, this term gives rise to supplementary graphs 
(Fig. 7b) in which the "strings" of T i issued from the two spins simply end 
on some site, giving rise to a factor V. (Continuing the analogy with direc- 
ted SAWs, notice that this is quite similar to the des Cloiseaux (42) represen- 
tation of polymer chains in a solvent, V playing the role of a magnetic 
field.) Let us sketch how these graphs can be resummed on the example of 
the equal-time two-point function (So(t)SR(t)) of a "peripheral" affine 
PCA (2.6). Denoting by s the number of steps of the shortest "string," one 
can first resum the contribution of the "free" part of the longest one 
[beyond the (s + 1)th step], and obtain for the total contribution of these 
graphs 

V z 
G(s) (2.36) 

1 - (T1 + r2)  

In this expression, G(s) denotes the contribution of all pairs of strings of 
length s which have not met before s steps. It is given by 

G(s)=(T~+ T2)2s[1 - ~ PI(n/R)] (2.37) 
n = 0  

where P~(n/R) is the probability of first passage at the origin at "time" n of 
the relative walk [with normalized weights T1T2/(Tx+T2) 2 and 
(T~ + Tz)/(T~ + Tz)2]. Its expression can be found, for example, in ref. 43, 
thus allowing a complete calculation of the correlation function. However, 
it is not difficult to see that it does not exhibit any new phase transitions 
except those of the linear rule V = 0. This is presumably a general feature of 
all affine PCA. 

2.4. Dynamical Behavior of "'Quasi-Hamiltonian'" PCA 

In the "quasi-Hamiltonian" case, simultaneous upward and downward 
decimations can be performed in order to calculate correlation 
functions, ~25'28~ as illustrated by the example of Section 2.2. 
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This shows that n-point equal-time correlation functions are n-point 
functions of a D-dimensional equilibrium model. The coupling constants of 
this equilibrium model are the intraplane coupling constants of the (D + 1)- 
dimensional model, but with a signreversal for those which have been 
involved twice in the decimation process [for this reason, t 3 bonds were 
affected with a minus sign in formula (2.13)]. This result is the expected 
one when the PCA rule satisfies, in addition, the detailed balance principle 
(Section 1.6): then, it describes the parallel dynamics of a D-dimensional 
model, and equal-time correlation functions are of course the equilibrium 
correlation functions of this model. Let us illustrate this point on the 2D 
PCA of Fig. 5c, when it satisfies the detailed balance condition 
(1.33)-(1.34). Upward and downward decimations on the 3D hcp lattice 
leave us with a triangular model with coupling constants -Ko~ = -Koz = 
-Kt2 ( = - K ' ) .  As shown in Section 1.6, these coupling constants are 
precisely those obtained from (Ko3, K13, K23) through a star-triangle 
relation. The triangular model obtained is thus equivalent to the 
honeycomb model (1.35) with coupling constants Ko3 = K13 =/(23 (=K). 
This is the expected result, since the 2D PCA describes the parallel 
dynamics of such a model, as explained in Section 1.6. 

However, there is no such obvious interpretation of this "dimensional 
reduction" from D + 1 to D dimensions when the PCA is only "quasi- 
Hamiltonian" and does not satisfy detailed balance. (For the previous 2D 
PCA, one then obtains an anisotropic triangular model with coupling 
constants -K~.)  As already discussed in Section 1.6, this comes from the 
possibility of defining an asymptotic measure for these rules, provided one 
supplements it with a "current at infinity." 

Simultaneous upward and downward decimations for unequal time 
two-point correlation functions lead to a distinction between the two 
different situations described in Section2.2: (i) "spacelike" correlation 
functions, corresponding to nonintersecting "causality cones"; and (ii) 
"timelike" correlations (intersecting cones). 

The first case is illustrated by Fig. 8a on the example of the 2D PCA of 
Section 1.5: one is left with a triangular lattice locally distorted by the 
surface of a "pyramid" corresponding to the causality cone issued from the 
upper point. This pyramid is empty, as a result of upward decimation. 
Case (ii) is illustated by Fig. 8b: one obtains the two-point function of a 
lattice made of an infinite triangular layer on which up-pointing and down- 
pointing pyramids have been glued. All the elementary tetrahedra remain 
inside the pyramid, and the problem has thus a truly (D + 1)-dimensional 
nature, as is expected for a timelike correlation function. However, the 
resulting lattice has a much smaller size than the full space-time lattice, and 
this could possibly be used in order to build faster algorithms to compute 

822/54/'3-4-31 
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(a) 

Fig. 8. 

(b) 

(a) Spacelike correlation function of a (2D) "quasi-Hamiltonian" PCA. (b) Timelike 
correlation function of a (2D) "quasi-Hamiltonian" PCA. 

these correlations. The method can be generalized to n-point correlation 
functions: we refer to ref. 25 for a more detailed illustration on 3D 
examples. 

Phase Transi t ions and Universa l i ty  Classes. Phase trans- 
itions for "quasi-Hamiltonian" PCA can be identified from the critical 
points of the D-dimensional model found in the calculation of equal-time 
correlation functions. When D = 1, we expect this model to have phase 
transitions only in the limit of zero temperature and thus phase transitions 
to occur only for semideterministic limits of the PCA, as noticed in ref. 26. 
In other words, the disorder and critical varieties of the (D + 1)-dimen- 
sional equilibrium models are only asymptotic one to the other for infinite 
values of the coupling constants. These are the features encountered, for 
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example, in Section2.2. However, as soon as D >  1, the underlying 
D-dimensional model can have a transition at finite temperature, which 
means that the disorder and critical varieties have a nontrivial intersection 
for finite values of the coupling constants. This is indeed what happens for 
the 2D PCA of Section 2.5: it is a priori obvious when detailed balance is 
satisfied 5'11) since the honeycomb lsing model undergoes a transition for 

KF = 1/2. ln(2 + xf3) (ferro) 
(2.38) 

K A F  = - -  K F (antiferro) 

These are the critical points F and A F  indicated in the phase diagram of 
Fig. 5c along the line where detailed balance is satisfied. This suggests that 
a critical line should exist joining these points to the critical points C and 
C' found above in the linear limit as indicated by the mean-field theory of 
Section 2.1. Indeed, two other transition points (depicted by triangles on 
Fig. 5c) have been determined numerically for L = 0, (5) which confirms this 
hypothesis. We deduce from the above analysis that the singularities of 
equal-time correlation functions at the points F and A F  are those of the 2D 
Ising model: 

v .  = 1, r/• = 1/4 (2.39) 

(and, more generally, v =v~q, q~ =r/T ). However, timelike correlation 
functions are expected a different critical behavior, with exponents vii and 
qu" From the point of view of the (D + 1)-dimensional equilibrium model, 
this appears at first sight as utterly paradoxical: it means that the critical 
behavior at the intersection with the critical variety displays (i) anisotropic 
scaling of D dimensions versus one, contrarly to the general wisdom about 
the "irrelevance of anisotropy," and (ii) a free energy f ree  o f  any singularity 
at the transition (2 is just an algebraic expression). 

These questions have been adressed by Domany in his study of the 
hcp Ising model (u) and answers have been given by Domany, (u) Domany 
and Gubernatics, (a3) Aharony et al., (44) Zimmerman et a/., (46) and 
Auerbach (47) on the basis of Monte Carlo simulations, field-theoretic 
arguments, and series expansions. It appears that the intersection between 
the disorder and critical varieties is a Lifchitz tricritical point. 

This feature is not already apparent at the level of mean-field theory 
(see Domany (u) and Auerbach(47)), where this point rather appears as a 
usual Lifchitz point (see Hornreich et aL ~47)) with continuous transitions. 
However, as pointed out in ref. 13, this cannot be the whole story, since the 
upper critical dimension is expected to be D c = 4 (instead of Dc = 5 for a 
usual Lifchitz point, and the classical values of the exponents for D = Dc 
should be vi = 1/2 and v u = 1, as is expected for kinetic Ising models. (34) 
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We refer to the above papers for details concerning the solution of these 
puzzles, and will only reproduce here the field-theoretic arguments of 
ref. 13. The starting point is the following Langevin equation for the field 
~(x, t): 

- -  + ~/(x, t) (2.40) 
8t &o 

where HD is the Landau-Ginzburg Hamiltonian relevant to the description 
of the D-dimensional equilibrium model close to criticality: 

H D  = 1 2 ~(V• + lm~b 2 + g~b 4 ( 2 . 4 1 )  

Domany and Gubernatis then make use of the standard method making 
it possible to express time-dependent correlation functions as static 
correlations of the (D + ])-dimensional effective Hamiltonianl~ 

( {~ ~ "~ 2 / ~) H D "~ 2 (~ 2 H D 
sJ~ -'-t,-aa--) a# 

M 2 
= e2 (v~ 4,) ~ + ~ (v H ,~)= + T '~ 

1 
+ 7  (VZ~b)2 + V~b3V2~b + G~b4 + W~b6+ .-- (2.42) 

with M ~ m 2, p ~ m, G ~ m. This Hamiltonian is thus expected to describe 
the critical behavior of the associated (D + 1)-dimensional model on its 
disorder variety. Indeed, note that the coefficients in Eq. (2.42) are not all 
independant, being functions of m and g only. This has deep consequences: 

1. First, (2.2) has a remarkable symmetry property, namely Parisi- 
Sourlas supersymmetry(48); this accounts for the regularity of the freeenergy. 

2. Second, at the critical point m = 0 of HD, one observes that the 
parameters /~ and G in (2.42) simultaneously vanish; this identifies the 
critical point of HD + 1 as a Lifchitz tricritical point with D "soft" directions. 
Anisotropic scaling is expected at this point, and the fact that the new 
terms ~6 and ,h3V2 ~b become relevant in HD+I accounts for the upper '/* A_ 
critical dimension Dc = 4 and allows one to recover the expected classical 
values and 4 - e  expansion of the exponents/44) This approach thus sheds 
some light on the above puzzles, and demonstrates that the (D + 1 )-dimen- 
sional model is in a complete different universality class when considered on 

10 See, for example, ref. 64, where this mapping for a continuous field has been extensively 
studied. 
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its disorder variety. This raises interesting questions concerning the univer- 
sal character of this analysis: 

3. It suggests that the phase transitions of all D > 1 fully probabilistic 
PCA satisfying detailed balance are described by a Lifchitz point in the 
associated (D + 1)-dimensional model. 

4. The same conclusion is most likely valid for those PCA which are 
only "quasi-Hamiltonian': as long as the inside-plane coupling constants 
remain finite, anisotropy in the D "spatial" directions is expected to be 
irrelevant: one would thus have a "Lifchitz tricritical surface" in the phase 
diagram. 

5. Finally, one is tempted to ask whether PCA which do not satisfy 
"pseudosymmetry" could also fall in this universality class, and thus have 
the critical exponents of kinetic Ising models. We will come back to this 
point in the next section. 

2.5. S o m e  Remarks  on the  Cr i t ical  Behavior  of  Non l inear  PCA 

The time evolution of the PCA which are neither "affine" nor "quasi- 
Hamiltonian" ones has the full complexity--and interest--of nonlinear 
problems. In these cases, the diagrammatics associated with a given 
correlation function involves "reproduction" and "recombination" 
processes in addition to the diffusion and death processes already present 
for affine rules. These new processes are due to the multispin products (U 
and W terms) involved in the function F(Si) of Eq. (2.2) and are illustrated 
on Fig. 9 for the "peripheral" rules (1.2). The complexity of the evolution 
results from the combination of these nonlinear elementary processes. One 
of the simplest illustrations of how they can generate chaotic behavior is 
provided by the deterministic rule NR = 90 (x = z = 0, y = 1). In this case, 
the pattern generated from a single-site seed is simply the self-similar 
Pascal triangle and the nonlinear superposition of these individual patterns 
results in the chaotic (class III) behavior observed for a random initial 
state. In more complicated cases (such as rule NR = 30) an irregular pattern 
is obtained even from a single-site seed; these processes can also generate 
soliltonlike interacting structures (NR = 110). 

A lot of work has been devoted to the understanding of these non- 
linear effects, (2) and many questions remain open. In the following we only 
want to address some aspects of the problem of phase transitions. Do there 
exist other universality classes than those of the "linear" rules (behaving as 
directed SAWs) and "quasi-Hamiltonian" ones (behaving as kinectic Ising 
models) encountered in the two previous sections? 
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DEATH DIFFUSION REPRODUCTION 
( V )  (T1, 2 ) (U )  

RECOMBINATION S 

Fig. 9. Elementary diagrammatic processes encountered for correlation functions in the non- 
linear case (1.2) when summing over one spin (first row) or two spins (second row). 

2.5.1. How Large Is the Universality Class of Kinetic Ising 
Models? 
It has been suggested (26) that fully probabilistic PCA which are invariant 
under spin reverse fall into the universality class of kinetic Ising models (34) 
(i.e., have the same critical behavior as those satisfying detailed balance). 
The argument is based on the hypothesis that the critical behavior of these 
PCA can be described by a Langevin equation: 

-~r = QD[~b] + ~/(t) (2.43) 

which is similar to (2.40), except for the fact that QD[-~b] is no longer the 
derivative of a hamiltonian. Nevertheless, the authors of ref. 26 conclude 
that this modifies QD only by irrelevant terms in D = 4 - s  space dimen- 
sions. This would mean, for exargple, that the critical behavior in Fig. 5c is 
the same at points F and AF as along the whole boundaries (except for the 
semideterministic linear endpoints). Note, however, that even if the critical 
phenomena have the same nature, other dynamical aspects (such as the 
growth of domain walls) may be--and are--quite different from the case 
where detailed balance is satisfied (see, e.g., ref. 49). 

2.5.2. PCA in the Universality Class of Reggeon Field 
Theory. There are, however, examples in which new universality classes 
do appear. This is the case for our now familiar 1D PCA of Fig. 5b. In this 
case, a field-theoretic stud,: can be performed, and phase transitions are 
found to be described by Reggeon field theory (RFT) (s~ (except for the 
critical points of the linear case). This conclusion can be reached by 
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seemingly different methods or relations with other problems. We will 
briefly present them and point out that they are all different ways of seeing 
a unique problem. In doing so, the formulation of the PCA as a spin model 
and the diagrammatics above will be of great help. 

Equivalence with Directed Percolation. As first shown by Domany 
and Kinzel, ~1~ when an absorbing state is present (i.e., on the sides x = 0 or 
z =  1 of the cubic phase diagram), these rules become equivalent to a 
mixed site-bond directed percolation problem (35) on the square lattice, 
defined as follows. Each site of the square lattice (viewed as in Fig. la) 
being present with a probability p and each bond with a probability q, one 
studies the propagation of an initially "wet" site, each bond "conducting 
water" only in the upward (diagonal) direction (the time direction in 
Fig. la) and provided both sites connected by the bond are present. 
Denoting a wet site by Si,, = +1, the equivalence with the PCA of Fig. 5b 
is obtained, P(1/Si_~,,, S~+~,,) being the probability that site (i, t + 1) 
is wet, knowing the state of ( i - 1 ,  t) and ( i+  1, t). This requires that 
x = P(1 / -1 ,  - 1 ) =  0, since a site cannot be wetted by two dry neighbors, 
and leads to the following indentifications: 

y = P ( 1 / - 1 ,  1)=P(1/1,  - l ) = p q  

z = P(1/1, 1) = p[qZ + 2q(1 - q)] = pq(2 - q) 
(2.44) 

This equivalence suggests that we use here the method developed by 
Cardy and Sugar in their study of directed bond percolation (i.e., when 
p = l ) .  (36) It starts from a direct operator representation of two-point 
correlation functions, which is obtained by implementing the diagrammatic 
rules of Fig. 9a. (Note that, as usual, these graphs are "directed" ones, with 
respect to the time direction.) A Gaussian transformation is performed, 
which introduces scalar fields ~b(x, t) and ~(x, t). Keeping only relevant 
terms in the continuous limit in D - - - 4 - e  spatial dimensions leads to the 
RFT action for these fields, namely 

So+l=f  dtdx~162 (2.45) 

It is straightforward that a value of p different from 1 induces only minimal 
changes in this analysis: thus, the directed-percolation phase transition on 
the sides x = 0 (or z = 1 ) of the phase diagram of Fig. 5b is in the univer- 
sality class of RFT. The transition lines depicted have been determined 
numerically in ref. 10, and the values of the exponents v• and vii obtained 
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there agree with the result for RFT in D = 1 (known from strong-coupling 
expansions(51): 

v• = 1.105 __ 0.005, vii = 1.736+_0.001 (2.46) 

The direction-dependent properties of this phase transition (31's2) are 
qualitatively the same as those described in Section 2.2 for the endpoint C 
(which is, however, in a different universality class). In particular, the 
characteristic velocity Vm vanishes at criticality as Vm ~ ]p --  Pc] v~- o~. The 
question of the phase transitions for x ,  y ,  a n d  z all different from 0 is not 
definitely settled; it is, however, likely that the equivalence with RFT also 
holds there (no qualitative change arises in the diagrammatics), but that no 
phase transition exists for these fully probabilistic rules, as is already the 
case at the mean-field level. (The above critical lines would thus separate 
two phases only when restricted to the side x = 0 or z = 1.) There is in 
fact a common belief that 1D PCA only have phase transitions when an 
absorbing site is present. 

Equivalence with Schl6gl's First Model and with a Quantum Spin 
Chain. The "reproduction" and "recombination" mechanisms involved in 
the diagrammatics of nonlinear PCA are reminiscent of Schl6gl's models 
describing catalytic chemical reactions. (53) Indeed, the elementary processes 
of Fig. 9 mimic Schl6gl's first model, which describes the evolution of 
a chemical species X diffusing in space and undergoing the following 
reactions: 

J( --* 0 (death) 

X ~ 2X (reproduction) 

2X~2X~X} (recombinations) 

(2.47) 

[Notice in particular that the mean-field approach (2.10) is the one used in 
ref. 53 to study the phase transitions of this model.] This model is in fact 
the first stochastic process whose equivalence with RFT has been 
recognized. (54'55) This was done originally by relating the n-particle density 
of the model to the n-Pomeron amplitudes of RFT (54) or by constructing a 
quantum mechanical Hamiltonian (55) in a way similar to that of Appen- 
dix B. One then finds an equivalence with a quantum spin chain which is 
known independently to be a realization of RFT. (56) 

A Reggeon Two-Dimensional Spin Model. It results from the 
above considerations that the 2D equilibrium spin model associated to the 
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PCA of Fig. 5b on the sides x = 0 and z = 1 belongs to the universality class 
of RFT. This provides us with an example in which the zero-temperature 
critical behavior at the intersection with the disorder variety is highly non- 
trivial. The constraint x = 0 is a zero-temperature limit which restricts the 
space of spin configurations by excluding those with ($3, $1, $2) = 
( -1 ,  +I ,  +1). With this restricted configuration space in mind, the 
coupling constants of the spin model on the triangular lattice read 
(Appendix A): 

eSK, 3=esK23= z eSKl 2= z ( 1 - z )  
1 - z' [y(1 - y)]2 

(total magnetic field) 

(2.48) 

In fact, the possibility of constructing a spin model belonging to the univer- 
sality class of RFT was first pointed out by Cardy and Sugar (57) and model 
(2.48) does have some similarities with the one introduced there (while not 
obviously equivalent). 

3. C O N C L U S I O N  A N D  P R O S P E C T S  

We have been concerned in this paper with the general equivalence 
between a D-dimensional probabilistic cellular automata and a (D + t ) -  
dimensional equilibrium spin model satisfying a "disorder condition." This 
equivalence consists in the identification of the probability measure over 
space-time histories of the PCA with the Boltzmann weight of an 
equilibrium spin model (the "disorder condition" on its coupling constants 
coming from the normalization of probability). 

This appears as fruitful and interesting in two respects. First, it allows 
us to borrow techniques from the equilibrium statistical mechanics of spin 
models in order to study statistical properties of the dynamical behavior of 
PCA. Indeed, the associated equilibrium spin model provides a global 
description of the time developments of the PCA which is a useful tool both 
for intuitive reasoning and quantitative approaches. This has been our 
main concern throughout this paper. It allowed us to study the properties 
of remarkable classes of PCA such as "quasi-Hamiltonian" or "affine" ones. 
Diagrammatic methods have been introduced for the calculation of time- 
dependent correlation functions, which allow explicit calculations in some 
solvable cases and are in general useful guides, e.g., for analyzing phase 
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transitions of PCA through field-theoretic techniques. The second 
interesting aspect, which has only been indirectly dealt with in this paper, 
concerns the equilibrium statistical mechanics of spin models itself. Indeed, 
the "disorder variety" of a model (i.e., the subspace of the phase diagram 
under which the "disorder condition" between coupling constants is 
satisfied) appears as a remarkable subspace on which a spectacular 
decoupling arises. As a consequence, the exact expression of the partition 
function is known on this subspace, among other quantities. This is 
interesting not only from the point of view of exact results (these exact 
expressions can be used to check conjectures or to improve series 
expansions~58)), but also raises physical questions on these models. Indeed, 
we have seen on several examples that the critical behavior at the intersec- 
tion of the disorder and critical varieties (which can be at zero or finite 
temperature) displays very peculiar features such as anisotropic scaling and 
critical exponents different from the generic exponents of the model, at 
variance with the usual irrelevance of anisotr0py. Finding a general 
understanding of these points is still an active field of research. Also, 
possible experimental implications (such as correlation length anomalies; 
see Garel and Maillard (17)) should be kept in mind. 

Let us conclude by pointing out two directions in which it seems to us 
that further investigations can and should be performed. We have already 
mentioned the first one, which is the understanding of critical phenomena. 
The techniques and results described in this paper are first steps in this 
direction. They could be good starting points for a systematic study of the 
universality classes, in particular through field-theoretic approaches. The 
second one is concerned with the deterministic limits of PCA. We have 
mentioned that their time developments correspond to ground states of the 
associated equilibrium spin model, as noticed in ref. 10. The zero-tem- 
perature limit is, however, taken in a peculiar way in order to remain on 
the disorder variety of the model. Despite this complication, it seems 
possible to use conventional techniques to study the nature of these ground 
states and of their first excitations (for some attempts in this direction, see 
ref. 45) in order to relate their properties (degeneracy, frustration, etc.) to 
the nature of the pattern of the automaton (complexity, etc.). 

A P P E N D I X  A 

A . I .  "Per iphera l "  PCA of Sect ion 1.1. 

In order to express the conditional probability P(S3/S1, $2) 
exponential form, let us enumerate the 23= 8 spin configurations: 

in 
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z = 2 -1 exp(H1 + H2 + H3 + K23 + K13 --k K12 + Ko) 

x = 2-a  exp(H1 - H2 - -  H 3  - K 2 3  - K 1 3  + K12 + Ko) 

Yl = 2-1 exp( - HI  + H2 - H 3  q-  K 2 3  - -  K 1 3  - K 1 2  - Ko) 

Y2 = 2 -1 exp(H1 - H2 + H 3  - -  K 2 3  + K 1 3  - K12 -- Ko) 
(A.1) 

1 - z = 2-a  exp(H1 + H 2 - -  H 3 - K23 - K13 + K12 - Ko) 

1 - x = 2 -1 exp( - H  1 - H 2 - H 3 + K23 + K13 + K~2 - Ko) 

1 -- Yl = 2 - t  exp( - H  1 + H 2 - H 3 - -  K z 3  + Ka3 -- K12 + Ko) 

1 - Y2 = 2-1 exp(Hl  - H2 - H 3  + K 2 3  - g 1 3  - K12 + Ko) 

The product  of all these equations determines the normalizat ion 

2 -8 = x(1 - x) z(1 - z) 1-] Yi( 1 - Yi) (A.2) 
i 

As first noticed by Enting, (7) all coupling constants but o n e - - L ,  for 
example - -can  be eliminated in Eq. (A.1) by taking the product  of the 
four equations where L appears with a "plus" sign (this is due to the Z 2 
symmetry).  This leads to the desired expressions: 

e8/(o = zx(1 - y~)(1 - Y2) 

(1 - z ) ( 1  - x )  y t  Y2 

eSH, = z(1 - z ) y 2 ( 1  - Y 2 )  e8~2 = (1 ._~ 2) 
x(1 -- x) yl(1 - Y l  ) '  

e8H3 = zxyl Y2 (A.3) 
(1 - z ) ( 1  - x ) ( 1  - y l ) ( 1  - -  Y2) 

eSX23=z(1 - x )  yx(1 --Y2) e 8K'3= (1 *-*2) 
x(1  - z)  y2(1 - y l ) '  

e8KL12 = zx(1 - z ) ( 1  - - x )  

Y, Y2( 1 -- Yl)( 1 -- Y2) 

Linear Case. The linear case is defined by U =  V = 0 :  the 2D 
Hamil tonian  thus becomes invariant by spin reverse, and one obtains the 
tr iangular zero-field Ising model  on its disorder variety: 

e(s3/Sl:, S2)linear = 1/211 + S3(Ta $2 + T2SI)] 

=)t -1 exp(K23S2S3+K13S~S3+K~2S1S2) (A.4) 
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In this case, the d i sorder  condi t ion  s imply reads 

t 3 -I- t 1 t 2 = 0 (A.5) 

where we have set t~ = tanh(Kjk). The  T~ have the fol lowing expression in 
term of the Ko: 

T, t , ( 1 - t ~ ) / ( 1  2 2 = --  t l / 2 )  
(A.6) 

T2 = t2(1 - t~)/(1 - t,2 t2 )2 

which can be easily inverted,  using (A.3), 

(1 + T1 + T2)1/2(1 + T1 - T2) 1/2 - (1 - T~ - T2)1/2(1 - T1 + 7"2) 1/2 
tl  = (1 + T1 + T2)~/2(1 + T1 - 7"2) ~/2 + (1 - T~ - T2)1/~(1 - T~ + T2) ~/2 

t2 = (1 ~ 2) 

[1 - (T ,  - T2)22 '/2 - [1 - (T  1 q- T2)2] '/2 
t 3 =  

4T1 T2 

A.2. General Case 

(A.7) 

with 

P ( S 3 / S l ,  So,  S 2 ) - -  1/21-1 + S 3 ( V +  TIS2-{- T 2 S  1 --~ ToS 0 

--~ U 1 S o S  2 -I- Uo S  1S 2 ..~ U z S o S  2 --~ W S  1 SOS2)  ] 

V= l / 4 I x  + z + ~ ( y i +  v i ) - 4 ]  
i 

Tl = 1/4(z --  x + Y2 + Y0 -- Yl + vl -- v2 --  Vo) .... 
(A.9) 

U1 = 1/4(z + x + Yl - Y o -  Y2 + vl - Vo - v2) .... 

W= l/4 [ z -  x + ~ (v i -  y~)] 

Using the same me thod  as for Eqs. (A.1), one can ob ta in  P in exponent ia l  
form as 

P(S3/S1, So, $2) 

= 2 - ' e x p ( E H i S i + Y ' K o S z S j + E K i S j S k S , + L S o S 1 S z S 3 )  (A.10) 
-- i  ij 

(A.8) 

Let  us consider  the 1D P C A  of Section 1.3, together  with the 2D one 
of Sect ion 1.5. In  nonexponen t i a l  form, the cond i t iona l  p robab i l i t y  reads  
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with 

~.--16 

c16HI 

e16H3 

el6K01 

e16K13 

el6Kl 

e16K3 

e 16L 

In the "peripheral" cases 

.X '~ /)0, 

one can check that  

x(1 - x )  z(1 - z )  1-] y~(1 - 7i) ~,(1 - vi) 
i 

z(1 - z) yo(1 -- Yo) 72( 1 - -  7 2 )  v l ( l  --/31) 
X(1 - - x )  V o ( 1  - -  Vo) v2(1 - -  V2) y1(1 - -  Yl) .... 

XZyl Y2 73( 1 -- vl)(1 -- v2)(1 -- v3) 

(1 - -  X ) ( 1  - -  Z ) ( I  - -  7 1 ) ( 1  - -  7 2 ) ( 1  - -  7 3 )  U1/32/)3 

x(1 - x )  z(1 - z )  72(1 - 72)/32(1 -/32) 

yo(1 - Yo) 71( 1 - 71) Vo( 1 - Vo) vl(1 - vl) .... 

z(1 -x ) /31(1  - 71) Yo( 1 - V o )  72( 1 - /32) 

x(1 - z )  y1(1 - vl) Vo(1 - Yo) v2(l - 72) .... 

xzyl/31(1 - yo)(1 -/3o)(1 - 72)(1 -/32) 

( l  - - x ) ( l  - -  2 ) ( 1  - -  Y l ) ( I  - - / 31 )  YoVoY2/32 .... 

z(1 - z) roY1/32(1 -/3o)(1 - vx)(1 - v2) 

x(1 - x )  YoYl Y2( 1 - Yo)( 1 - 71)( 1 - 72) 

(1 - -  .X') Z/) 1/32/33(1 - -  y l ) ( 1  - -  7 2 ) ( 1  - -  7 3 )  

X(1  - - z ) ( l  - - / 3 1 ) ( 1  - - / 9 2 ) ( 1  - -  V3) Yl  72Y3 

(A.I1) 

Z = Y0, Yl = V2, Y2 = Vl (A.12) 

Ho = K01 =Ko2=Ko3=KI =K2=K3=L=O (A.13) 

and that the results (A.2)-(A.3) are recovered for the other  coupling 
constants. 

A P P E N D I X  B. Q U A N T U M  H A M I L T O N I A N  D E S C R I B I N G  
A PCA 

One can associate a D-dimensional  quantum Hamil tonian with a given 
PCA. Indeed, the probabil i ty P[{S~}; t]  of a given configuration of  the 
D-dimensional  array of spins follows a master  equation: 

P[{S'i}, t+At]= ~ pE{S'i}e--{S,}-IP[{S,};t] (B.1) 
{s,} 
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where p is the product of local conditional probabilities: 

p[{S;} *-- {S,}] = 1-[ P ( S ; I { S j } )  (B.2) 
i 

Defining the state [0(t)) of the system in such a way that P[{S}; t] = 
({S}[0( t ) ) ,  we have that [O(t)) follows a discrete-time Schr6dinger 
equation with Hamiltonian H e given by 

({s;}  I~ "~'1 {s;}) =pE{S;} ,- {s,}] (B.3) 

Note that p is nothing but the row-to-row transfer matrix of the associated 
(D+l)-dimensional classical spin model; in this sense (B.3) simply 
expresses the well-known correspondence between a D-dimensional quan- 
tum spin model and a classical spin model in D + 1 dimensions. It is, 
however, in general quite intricate to find an explicit expression of He  in 
terms of spin operators. This can be done, for example, in the case of Sec- 
tion 2.45 in order to establish the equivalence with Reggeon field theory. 

A P P E N D I X C .  Q U A S I - H A M I L T O N I A N  RULES 

In order to find the rule numbers which are deterministic limits of 
"quasi-Hamiltonian" PCA, it is convenient to cast condition (1.38) under 
the simpler form 

~lql=~2q2=~o~0 

q~g2qo x 1 - z  

~1~2~o 1 - x  z 

where the following variables have been introduced: 

~i = Yi qi = -  

1 -  y i '  1 - v i  

The problem is then to find the "points at infinity" of this eight-dimen- 
sional manifold. Let us give the complete list of the rule numbers found in 
this way, among the 256 deterministic rules of Section 1.3 (we only give the 
"minimal representing rule" numbers, which means that one has to add to 
this list all the transformed rules by conjugation and reflection): 0, 1, 2, 3, 
4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 19, 23, 27, 29, 32, 34, 35, 37, 42, 43, 50, 51, 
58, 76, 77, 128, 136, 138, 140, 142, 160, 162, 164, 168, 170, 172, 178, 184, 
200, 204, 232. 
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